
shallot - Scripting Documentation
Release 1.2.4764

Josef Hahn

Jul 26, 2020

CONTENTS

1 General Notes 3
1.1 Plugin Management Assistant . 3
1.2 General Plugin Design . 3
1.3 Implement & Register . 3
1.4 Position Indexes . 4
1.5 The ‘_ApiProxy’ Class . 4
1.6 Exceptions . 4
1.7 Localization . 5
1.8 Deployment . 5

2 Feature Overview 7
2.1 Actions . 7
2.2 User Feedback . 8
2.3 Configuration Values . 10
2.4 Settings . 11
2.5 Main Window . 11
2.6 EURLs . 12
2.7 Filesystem . 12
2.8 Detail Columns . 14
2.9 Operations . 14
2.10 Panel Details . 15
2.11 File Property Dialog . 16
2.12 File Searches . 18
2.13 Thumbnails . 18
2.14 Bookmarks . 19
2.15 Logging . 20
2.16 Utilities . 20

3 API reference 21
3.1 shallot module . 21

Python Module Index 55

Index 57

i

ii

shallot - Scripting Documentation, Release 1.2.4764

Shallot has a plugin interface which allows to add functionality to the core from outside. This document is for people
who are going to create a new Shallot plugin in order to bring some new functionality to Shallot.

A Shallot plugin developer should have at least basic skills in the Python programming language and should have read
the entire section h_scriptingmanual (From the h_featureoverview, it might be okay to read just the parts relevant for
you).

After the h_scriptingmanual, you find the complete interface reference. You should use it for finding some technical
details (which classes exist, which methods are there, which arguments do they have, . . .). It lists the structure of
the interface from different perspectives. Some of them are quite useful, others ones are more technical and only
interesting in rare situations. Good starting points are those sections:

• The “Class List” provides an overview of all existing classes.

• The “shallot Namespace Reference” gives a coarser overview of all existing subparts.

CONTENTS 1

https://www.python.org

shallot - Scripting Documentation, Release 1.2.4764

2 CONTENTS

CHAPTER

ONE

GENERAL NOTES

This section covers some notes and hints, which you should know about before you begin with developing Shallot
plugins.

1.1 Plugin Management Assistant

Shallot includes a plugin manager. It helps to work with plugins as it provides an overview of all installed plugins and
some management actions you can execute on them (e.g. deleting, disabling).

It is not enabled by default, since it is not required for day-to-day use. For plugin development, you should enable the
Plugin Management in the Tuning dialog.

It also provides a collection of sample plugins. They can either be used as some kind of a tiny step-by-step tutorial or
as templates for your new plugins.

1.2 General Plugin Design

Shallot plugins are Python scripts in a single file with the filename [pluginname].py (replacing [pluginname] with the
actual name). They must import shallot and use the methods provided there for interacting with the Shallot core.

1.3 Implement & Register

For the most kinds of functionality you can add to Shallot, the development pattern is as follows (everything happening
in your Python plugin file):

• At first you subclass one of the Shallot base classes and put your functionality into the class implementation.
The documentation of the base class tells which methods may and/or must be implemented in your subclass.

• Then, in the main section of that plugin - this is the unindented root block as it is in typical executable Python
scripts - the code must add this new subclass to the Shallot runtime. This happens with one of the register*
methods in the Shallot interface.

Which particular elements of the Shallot interface are used, depends on what kind of functionality you want to add.
The section h_featureoverview below describes the details.

3

shallot - Scripting Documentation, Release 1.2.4764

1.4 Position Indexes

For some kinds of pluggable functionality, Shallot keeps an ordered list of plugged objects. The semantic of the order
can differ, e.g. it can be used for displaying purposes or for an execution order.

The technical mechanism is similar on most places in the interface. Particular functions (i.e. some constructors and
register methods) have this two arguments amongst others:

• positionGroup: A coarse order information. This must be set to one of the elements in a particular enumeration
(see the function documentation for details).

• positionIndex: An integer between 0 and (at least) 10000 which controls the order within the chosen group.
Lower values mean sooner placement in the order. They are not required to be continuous but can have holes
and also duplicates (although the order of duplicates to each other is then undefined). Existing larger indexes
will also not shift (as they would do in a typical list) on insertion of a new item.

The documentation texts of them explain what the order is used for. Those two arguments together control the place-
ment in the ordered object list. Typically both ones are optional and have a default:

• positionGroup: Some fixed default group. The function documentation might mention details.

• positionIndex: Some random-like integer, which is derived from your class name (and so is always the same in
each run on each machine).

If so, you can decide to use those defaults, or to manually set either one or both of them.

If the order is critical (e.g. because it is the execution order of a process which only succeeds in a certain order), it is
probably required to manually set them. Obviously you must then find out the values from the related objects (e.g. by
trial-and-error) and tune your values according to them.

If not, you are fine with the defaults in many cases.

1.5 The ‘_ApiProxy’ Class

Studying the reference, you will see the class shallot._ApiProxy be referred at many places. Whenever this is the
case, e.g. as a superclass of some interface classes, this is mostly a technical information with no big impact on the
developer. It is a common superclass for many classes in the Shallot scripting interface, since it gives them access to
some internal parts of the infrastructure. You should not directly come in touch with any specifics of this class.

1.6 Exceptions

The base class for exceptions in Shallot is shallot.Exceptions.ScriptedException. The shallot.Exceptions namespace
contains more interesting stuff.

Try to only throw those exceptions (either directly or indirectly) from your code to be failsafe. You should use
one of the subclasses in raise statements. You should never use subclasses in expect [Foo] statements but only shal-
lot.Exceptions.ScriptedException. Use shallot.Exceptions.ScriptedException.isExceptionClass for checking against a
certain class (as string) and rethrow if needed. This is because a exception in Shallot typically has more classes than
the direct Python side hierarchy would look like.

4 Chapter 1. General Notes

shallot - Scripting Documentation, Release 1.2.4764

1.7 Localization

Shallot plugins can support more than just one language. For multi-language support, you should create a global
instance of shallot.IntlStringMap at the beginning and take strings from there when they are used for displaying:

import shallot

Strings = shallot.IntlStringMap(
HelloWorld = {"en":"Hello world!", "de":"Hallo Welt!"},
SomethingElse = {"en":"Something different", "de":"Etwas anderes"},

)

shallot.Logging.log_info(Strings.HelloWorld)

1.8 Deployment

The deployment of a Shallot plugin is as easy as copying the plugin file. However, the destination differs among the
various operating systems. Since there is a system-global location and a per-user location, there is one more degree of
variation.

On the target system, you can find out the actual destination paths by means of the ‘Find in filesystem’ action in the
h_pluginmanager.

Once the destination path is known, you can choose an arbitrary deployment technique - e.g. manual file copying, or
using the native package manager from the operating system - for bringing the plugin file in place.

1.7. Localization 5

shallot - Scripting Documentation, Release 1.2.4764

6 Chapter 1. General Notes

CHAPTER

TWO

FEATURE OVERVIEW

This sections introduces the different kinds of functionality you can add by means of this plugin interface. Those are
the technical building blocks you have to use for implementing your plugin logic.

Most of the sections begin with an abstract explanation of the mechanisms. Read ahead! It should become clear later
in the text. Each section includes links to the elements in the scripting interface reference which you need to know.
You should read the documentations of this elements.

2.1 Actions

As a first approximation, an action is some piece of code for execution. Conceptually an action is similar to a simple
Python function (although it technically is not just a function as you will read later). However, executing them brings
a lot of additional functionality (e.g. dialog support for user communication) and infrastructure.

Actions are used in different ways in Shallot:

• The easiest thing to do with an action is to simply execute it. This is similar to directly executing the code, but
using the additional functionality.

• Another common usage is to offer them in the user interface for some files or directories, so the user can decide
to execute them.

• There are some other places in the plugin interface, which work with actions somehow. Read those documenta-
tions for details.

The first way gives a very versatile tool. In most places in the plugin code, you can put some parts of your routine into
an action and execute it in order to use the additional functionality we will see later.

The second way enables your plugin to provide some code for a given selection of files and/or directories for the user,
so the user can manually trigger it. Those are typically represented in context menus or the toolbar.

At this point, our first approximation must see some corrections:

An action is a (indirect) subclass of shallot.Actions.AbstractAction. It has the following subclasses, which are typical
base classes for custom implementations:

7

shallot - Scripting Documentation, Release 1.2.4764

• shallot.Actions.ActionAction: This kind of action is executable.

• shallot.Actions.SubmenuAction: A submenu is a list of other actions. It is not directly executable, but can be
presented as a submenu to the user. This allows to bundle multiple shallot.Actions.ActionAction implementa-
tions which provide related functionality for better overview.

A shallot.Actions.ActionAction instance (i.e. an instance of your subclass) can be executed by initializing it at first
(calling shallot.Actions.ActionAction.initialize_sync) and calling shallot.Actions.ActionAction.execute.

For sample code, read the sources of the ‘action’ sample plugin (in the h_pluginmanager).

In order to provide your action subclass in the user interface, call shallot.Actions.register.

For sample code, read the sources of the ‘action.advanced’ sample plugin.

The additional functionality comes with the info parameter you get in your shallot.Actions.ActionAction.action im-
plementation. It is an instance of shallot.Actions.ExecutionInfo. Read this documentation for a full overview. One
essential thing you can do with such an object is to have dialogs with the user. The next section shows how to do this.

The shallot.Actions namespace contains more interesting stuff.

2.2 User Feedback

User feedback is everything about giving some information to the user and waiting for its answer in an interactive way.

Typical situations where user feedback operations take place are Action executions. There an instance of shal-
lot.Actions.ExecutionInfo is available. shallot.Actions.ExecutionInfo.userfeedback instance gives you access to an
instance of shallot.Actions.ExecutionUserFeedback, which is the key element to all kinds of feedback operations.

8 Chapter 2. Feature Overview

shallot - Scripting Documentation, Release 1.2.4764

For sample code, read the sources of the ‘userfeedback’ sample plugin (in the h_pluginmanager).

2.2. User Feedback 9

shallot - Scripting Documentation, Release 1.2.4764

2.3 Configuration Values

A plugin can use own configuration values which are stored by Shallot and are visible to the user in the Tuning dialog.

They are fine for making stuff configurable for special situations, which should typically should stay at default. For
many other situations, e.g. when the user is expected to changes this value regularly, check if the Settings features fit
better.

Using an own configuration value begins with subclassing shallot.ConfigurationValue. Afterwards, you should create
one instance of this class globally and use its methods. No registration is required.

For sample code, read the sources of the ‘configurationvalue’ sample plugin (in the h_pluginmanager).

10 Chapter 2. Feature Overview

shallot - Scripting Documentation, Release 1.2.4764

2.4 Settings

Settings are a common mechanism for various kinds of customizations the user can make in its Shallot environment.
The user can store them, bind them to particular subdirectories and profiles and manage them in the Settings dialog.

A plugin can participate in this mechanism by adding own settings.

This begins with subclassing shallot.Setting. Afterwards, shallot.Setting.register must be used for registering it.

For sample code, read the sources of the ‘setting’ sample plugin (in the h_pluginmanager).

2.5 Main Window

The shallot.MainWindow class provides some navigation function and more. Read the class documentation for details.
The main window object is globally available as shallot.MainWindow.current.

For sample code, read the sources of the ‘mainwindow’ sample plugin (in the h_pluginmanager).

2.4. Settings 11

shallot - Scripting Documentation, Release 1.2.4764

2.6 EURLs

EURLs are addresses of objects in the filesystem. They are a very basic part of the Shallot foundation.

Conceptually EURLs are similar to [URLs](https://en.wikipedia.org/wiki/Uniform_Resource_Locator). In order to
express cascades of locations, EURLs are defined as a superset of URLs. As a meaningful example, this EURL refers
to a file in an archive file, which in turn is located on a remote server:

zip:/[ftp://ftpserver/foo/bar.zip]//zippedfolder/zippedfile

This cascades can have arbitrary depths (although this obviously doesn’t make sense in arbitrary combinations).

EURLs are used in many different parts in the scripting interface. They are instances of the class shallot.Eurl, which
provide a rich set of getters and creator functions.

For sample code, read the sources of the ‘eurl’ sample plugin (in the h_pluginmanager).

2.7 Filesystem

Shallot keeps an own model of the entire filesystem tree in memory (technically, it determines and stores stuff just on
demand, of course). A Shallot plugin has different ways to work with this model.

At first, there are some methods for requesting some informations directly from the model. Find the static methods
in shallot.Filesystem for more details (not all of them request things but some are relevant for the stuff explained
later). A key class in interactions with the model, also used at various different parts in the scripting interface, is
shallot.Filesystem.Node.

For sample code, read the sources of the ‘filesystemnode’ sample plugin (in the h_pluginmanager).

A different way of using it filesystem model is to provide custom implementations and own nodes in the tree.

12 Chapter 2. Feature Overview

https://en.wikipedia.org/wiki/Uniform_Resource_Locator

shallot - Scripting Documentation, Release 1.2.4764

This at least requires to subclass shallot.Filesystem.Handler and registering it with shallot.Filesystem.Handler.register.

In typical scenarios it also requires to create a shallot.Filesystem.Node which is associated with this handler and to
insert it into the model. Some of the static methods of shallot.Filesystem are used for this procedure. Please note that it
is just required to insert root nodes somewhere. The subtree of that node is specified by your handler implementation,
but the node insertions (and removals) take place implicitely.

You should also read about Operations, since you might have to deal with the key object of this feature here as well.

For sample code, read the sources of the ‘filesystem’ sample plugin (in the h_pluginmanager).

A filesystem handler has a wide range of possibilities for extending the Shallot functionality. One of them are custom
detail columns, which are subject of the next section.

2.7. Filesystem 13

shallot - Scripting Documentation, Release 1.2.4764

2.8 Detail Columns

A custom detail column, as it is visible in file views, can offer additional information to the user.

Implementing custom detail columns begins with subclassing shallot.DetailColumn. You should then create one in-
stance of this class and add it to some nodes with shallot.Filesystem.Node.add_detail.

For sample code, read the sources of the ‘filesystem’ sample plugin (in the h_pluginmanager).

2.9 Operations

Operations are a concept of bundling a bunch of small changes in the filesystem together to one large step. They
are also essential for working in cascaded filesystems as they are expressed with EURLs. Operations are entirely a
backend concept without any direct representations in the user interface.

A small example explains why this bundling is a required thing: There is a ftp server which contains two archive
files; a.zip (A) and b.zip (B). They build the roots of the subtrees zip:/[ftp://foo/a.zip]// and zip:/[ftp://foo/b.zip]//,
each containing the contents of the respective archive. The user requests a large file copy action for 1000 files in
zip:/[ftp://foo/a.zip]// to somewhere in zip:/[ftp://foo/b.zip]//. In an unbundled way, Shallot would at first fetch A,
then extract the first file, then fetch B, put the file content into the archive and upload the new version of B again.
Afterwards, it would run the same loop for the second file, then for the third, . . . In an operation, Shallot would fetch
A and B just once, then works on the local versions and just uploads the final new version of B in the end.

This bundling is realized in the shallot.Operations.Operation class. You get an instance of it in those different ways:

• In the most situations, where filesystem operations potentially make sense, there is an instance directly available
as a parameter in a method of your subclasses. The documentation of the Shallot interface classes should help.

• Sometimes there is an instance available, but it is not directly available from the function parameters. In
such cases, the documentation should help as well. A typical example is the execution of Actions. Your
implementation of shallot.Actions.ActionAction.action gets called with the parameter info, which is a shal-
lot.Actions.ExecutionInfo instance. It has the member shallot.Actions.ExecutionInfo.operation which returns a
operation object.

14 Chapter 2. Feature Overview

shallot - Scripting Documentation, Release 1.2.4764

• In rare cases you have to explicitely create one. This is when you don’t get an existing instance from somewhere,
but you need one for some reasones. You can create a new instance with shallot.Operations.Operation.create,
but then it must be manually committed with shallot.Operations.Operation.commit in order to transfer all the
new versions to their real destinations.

The key method for using the bundling mechanism is shallot.Operations.Operation.fetch_file (and shal-
lot.Operations.Operation.fetch_container_file, which is just a convenience variant with a subtle difference in the argu-
ments). Whenever you need to read the content of a file in order to eventually replace it with a modified version, you
should use it.

Please note that operations are also by the only convenient method you would even have whenever your
code potentially works with cascades of filesystems. Whenever you need to get the actual data streams of
the affected archives for some location like zip:/[zip:/[ftp://foo/a.zip]//another.zip]//somephoto.jpeg, calling shal-
lot.Operations.Operation.fetch_file for some part of this address is an easy way (e.g. a shallot.Filesystem.Handler
implementation for a custom archive format will need to do that all the time).

For sample code, read the sources of the ‘operation’ sample plugin (in the h_pluginmanager).

The shallot.Operations.Operation class provide some more. Amongst others, there is the shal-
lot.Operations.Operation.filesystem member, which provides you access to an instance of shal-
lot.Operations.FilesystemOperation. It provides some primitive steps you can also execute in a bundled way.
See the class documentation for details.

For sample code, read the sources of the ‘filesystemoperations’ and ‘filesystemoperations.advanced’ sample plugins.

The shallot.Operations namespace contains more interesting stuff.

2.10 Panel Details

Panel details can be provided by a plugin in order to provide the user with additional information about a selection of
one or more files in the Details part of the Shallot window.

This often is used for presenting some special kinds of file metadata.

The first step to a custom panel detail is to subclass either shallot.PanelDetails.SingleSelectionPanelDetail

2.10. Panel Details 15

shallot - Scripting Documentation, Release 1.2.4764

or shallot.PanelDetails.MultiSelectionPanelDetail. An instance of it must be registered with shal-
lot.PanelDetails.PanelDetail.register.

For sample code, read the sources of the ‘paneldetails’ sample plugin (in the h_pluginmanager).

The shallot.PanelDetails namespace contains more interesting stuff.

2.11 File Property Dialog

The file property dialog is another place where plugins can provide custom pieces of information (and user interac-
tions).

2.11.1 Dialog Tabs

A custom tab in the property dialog can show one or more information pieces in different views. It can also offer
buttons for user interaction.

16 Chapter 2. Feature Overview

shallot - Scripting Documentation, Release 1.2.4764

The first step is to subclass shallot.FilePropertyDialog.Tab and to register this class with shal-
lot.FilePropertyDialog.Tab.register.

For sample code, read the sources of the ‘filepropertydialogtab’ sample plugin (in the h_pluginmanager).

The shallot.FilePropertyDialog namespace contains more interesting stuff.

2.11. File Property Dialog 17

shallot - Scripting Documentation, Release 1.2.4764

2.12 File Searches

Custom search criterion implementations bring additional functionality to Shallot file searches.

The first step is to subclass shallot.FileSearch.SearchCriterion and also shallot.FileSearch.SearchCriterionFactory (the
latter one has to refer to the former one in the constructor call; see class documentations). Register the latter one with
shallot.FileSearch.SearchCriterionFactory.register.

For sample code, read the sources of the ‘searchcriterion’ sample plugin (in the h_pluginmanager).

The shallot.FileSearch namespace contains more interesting stuff.

2.13 Thumbnails

Thumbnails are visible in some view modes only. In order to support a new file format or to show certain custom
thumbnail content in particular situations, a plugin can add a thumbnail provider implementation to the thumbnail
creation mechanism.

18 Chapter 2. Feature Overview

shallot - Scripting Documentation, Release 1.2.4764

The first step is to subclass shallot.ThumbnailProvider and to register an instance of this class with shal-
lot.ThumbnailProvider.register.

For sample code, read the sources of the ‘thumbnailprovider’ sample plugin (in the h_pluginmanager).

2.14 Bookmarks

Bookmarks are shortcuts somewhere in the user interface, which allow the user to fastly jump to some common
filesystem locations.

2.14. Bookmarks 19

shallot - Scripting Documentation, Release 1.2.4764

The bookmark menu becomes visible once some bookmarks exist. A plugin can deal with bookmarks as well. It can
create and manage them with the methods in shallot.Bookmarks.

For sample code, read the sources of the ‘bookmarks’ sample plugin (in the h_pluginmanager).

2.15 Logging

Plugins can write all kinds of information to the Shallot log in order to find potential issues. See shallot.Logging for
details.

2.16 Utilities

There are some utilities for working with the environment available in shallot.Environment. This includes shal-
lot.Environment.Thread for running code asynchronously, shallot.Environment.Timer for running a code in regular
intervals and more.

20 Chapter 2. Feature Overview

CHAPTER

THREE

API REFERENCE

3.1 shallot module

class shallot.Actions
Bases: object

Everything about actions.

class AbstractAction
Bases: object

Abstract base class for executable actions or submenu structures of them. See the subclasses of
this class. They can be registered with shallot.Actions.register. They can be returned from shal-
lot.Filesystem.Handler.get_actions.

enabled()
Checks if this action is enabled.

initialize()
Initialize the action. This should make the time-consuming parts, e.g. for determining a label or
enabled state. Override this method in custom subclasses or leave the default implementation.

set_enabled(value)
Sets if the item is enabled.

Parameters value – The new value.

set_visible(value)
Sets the visibility of this item.

Parameters value – The new value.

visible()
Checks the visibility of this item (non-recursively).

class ActionAction(text, enabled=True, icon='', defaultActionPrecedence=0)
Bases: shallot._ApiProxy , shallot.Actions.AbstractAction

Abstract base class for an executable action, which can be made visible in menus or the toolbar or executed
directly. See shallot.Actions.AbstractAction for more.

Parameters

• text – A label text (can be “” if you want to directly execute it instead of adding it to
some menu structure).

• enabled – If this action is enabled.

• icon – Name of an icon.

21

shallot - Scripting Documentation, Release 1.2.4764

• defaultActionPrecedence – Precedence value for being a default action. This
int value must be higher than all others for becoming the default action. See shal-
lot.Actions.DefaultPrecedenceValues.

action(info)
The action implementation, i.e. what the actions should actually do. Override this method in custom
subclasses.

Parameters info – A shallot.Actions.ExecutionInfo execution info object.

execute()
Executes this action.

initialize_sync()
Initializes the action. This can be called from outside in order to do the initialization.

class ByRegExpPredicate(pattern)
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Shows actions only when the selection paths matches a regular expression. See base class for more infor-
mation.

class DefaultPrecedenceValues
Bases: object

Reference values for calculating default precedence values of open actions.

class DontResolveLinksPredicate
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Disables links resolving. See base class for more information.

class ExecutionInfo
Bases: object

An object for signalling action execution state changes between an action implementation and the Shallot
core (mostly to the core). Most calls lead to changes in the information presented by the progress dialog.

Can’t be constructed directly.

add_changed_eurl(eurl)
Requests updating the filesystem model info for an item.

Parameters eurl – The item location to be updated as shallot.Eurl.

cancel()
Cancel the action.

from_objectname()
Gets the current object name on from-side.

from_verb()
Gets the current verb on from-side.

head()
Gets the head text.

is_cancelled()
Is the action cancelled?

is_manual_intervention_needed()
Is manual intervention needed?

is_visualprocessfeedback_active()
Is visual feedback visibility enforced?

22 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

operation()
Gets the shallot.Operations.Operation transactional operation object.

progress_all()
How many items are to do in sum?

progress_done()
How many items are done?

progress_text()
The textual representation of the progress.

respect_cancel()
Respect a cancel request. This should be called from time to time (inside loops for example).

set_details(fromverb, fromobjectname, toverb, toobjectname)
Sets the progress details.

Parameters
• fromverb – The verb on from-side (the source).
• fromobjectname – (file path) The objectname on from-side (the source).
• toverb – The verb on to-side (the destination).
• toobjectname – (file path) The objectname on to-side (the destination).

set_head(txt)
Sets the head text.

set_manual_intervention_needed(v)
Set if manual intervention is needed.

set_progress(done, all, label)
Sets a current determinate progress.

Parameters
• done – The number of finished items.
• all – The gross number of items.
• label – Progress description text.

set_progress_indeterminate(label)
Sets a current indeterminate progress.

Parameters label – Progress description text.

set_visualprocessfeedback_active(v)
Sets the visibility of a visual feedback.

to_objectname()
Gets the current object name on to-side.

to_verb()
Gets the current verb on to-side.

userfeedback()
The shallot.Actions.ExecutionUserFeedback user feedback object.

class ExecutionUserFeedback
Bases: object

An object for communication with the user in action implementations. It can be used to ask the user for
some information or to just give some information to the user.

Can’t be constructed directly.

class MessageBoxButton
Bases: object

3.1. shallot module 23

shallot - Scripting Documentation, Release 1.2.4764

Buttons in a message box from shallot.Actions.ExecutionUserFeedback.

messagebox(message, buttons, icon, defaultbutton, abortbutton)
A message box. Returns the index of the chosen button.

Parameters
• message – The message text.
• buttons – A list of buttons as string list.
• icon – An icon name.
• defaultbutton – Answer for keyboard Enter as shal-

lot.Actions.ExecutionUserFeedback.MessageBoxButton.
• abortbutton – Answer for keyboard Esc as shal-

lot.Actions.ExecutionUserFeedback.MessageBoxButton.

simple_inputbox(question, defaulttext)
A simple input box.

Parameters
• question – The question.
• defaulttext – The default answer.

simple_messagebox(message, buttons, icon, defaultbutton, abortbutton)
A simple message box. Returns the chosen button.

Parameters
• message – The message text.
• buttons – A list of buttons as or-combination of shal-

lot.Actions.ExecutionUserFeedback.MessageBoxButton.
• icon – An icon name.
• defaultbutton – Answer for keyboard Enter as shal-

lot.Actions.ExecutionUserFeedback.MessageBoxButton.
May be 0 for no definition. :param abortbutton: Answer for keyboard Esc as shal-
lot.Actions.ExecutionUserFeedback.MessageBoxButton. May be 0 for no definition.

class HideOnCurrentDirectoryLevelPredicate
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Shows actions only when not searching for ‘current directory level’ actions. See base class for more
information.

class HideOnSelectionLevelPredicate
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Shows actions only when not searching for ‘selection level’ actions. See base class for more information.

class KeyShortcutPredicate(shortcut, triggers_on_currentdirectory_level)
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Sets a keyboard shortcut. See base class for more information.

class OnDirectoriesPredicate
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Shows actions only on directories. See base class for more information.

class OnFilesPredicate
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Shows actions only on files. See base class for more information.

class OnLinksPredicate
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Shows actions only on links. See base class for more information.

24 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

class OnSingleEntrySelectionPredicate
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Shows actions only on single-entry selections. See base class for more information.

class PositionIndexPredicate(index)
Bases: shallot.Actions.Predicate, shallot._ApiProxy

Sets a positioning information index. See base class for more information.

class Predicate
Bases: object

Controls when and how an action is created. Used in shallot.Actions.register. See base class for more
information.

class SubmenuAction(text, enabled=True, icon='', defaultActionPrecedence=0)
Bases: shallot._ApiProxy , shallot.Actions.AbstractAction

Abstract base class for a submenu action, which can be made visible in menus or the toolbar. See shal-
lot.Actions.AbstractAction for more.

Parameters

• text – A label text.

• enabled – If this action is enabled.

• icon – Name of an icon.

• defaultActionPrecedence – Precedence value for being a default action. This
int value must be higher than all others for becoming the default action. See shal-
lot.Actions.DefaultPrecedenceValues.

set_subitems(subitems)
Sets the subitems.

Parameters subitems – A list of shallot.Actions.AbstractAction instances.

static _factory(*a)

static register(actiontype, category='manage', predicates=[])
Registers a subclass of shallot.Actions.AbstractAction. This makes it permanently visible in the context
menu of selections and/or in the toolbar. If and where the action is visible depends on the action im-
plementation (see constructor parameters), the situation (what is selected in the user interface?) and the
registration mode.

Parameters

• actiontype – The class implementing shallot.Actions.AbstractAction. Its construc-
tor must be callable with just actiontype(nodes). The nodes parameter contains a list of
shallot.Filesystem.Node containing the node selection.

• category – The action category. Used for grouping in menus. Typically available are
“create”, “open” and “manage”.

• predicates – A list of shallot.Actions.Predicate controlling when and how the action
is offered.

class shallot.Bookmarks
Bases: object

Everything about TODO h_bookmarks “Bookmarks”.

class Bookmark
Bases: object

3.1. shallot module 25

shallot - Scripting Documentation, Release 1.2.4764

A bookmark. Change it with the methods in shallot.Bookmarks.

Can’t be constructed directly.

eurl()
The location this bookmark points to.

folder()
The subcollection (as list of strings).

id()
The bookmark id. It is not display anywhere but only used for the management methods in shal-
lot.Bookmarks.

label()
A textual description of this bookmark.

tags()
The tags strings. This value is solely used by plugins for their bookkeeping. It can allow to program-
matically find a particular bookmark (if the creator wrote meaningful information in it).

static add_bookmark(eurl, *, folder=[], label=None, tags=None)
Adds a new bookmark.

Parameters

• eurl – The location to bookmark.

• folder – A string list describing in which subcollection this bookmark should be placed.

• label – The textual description of the new bookmark.

• tags – A string for internal bookkeeping. Use it for recognizing your own bookmarks
later on. See shallot.Bookmarks.Bookmark.tags.

static change_bookmark(id, eurl, label=None)
Changes bookmark data.

Parameters

• id – The bookmark id this call is about (See shallot.Bookmarks.Bookmark.id).

• eurl – The new location.

• label – The new textual description.

static change_bookmark_tags(id, tags)
Changes bookmark tags. See shallot.Bookmarks.Bookmark.tags.

Parameters

• id – The bookmark id this call is about (See shallot.Bookmarks.Bookmark.id).

• tags – The new tags string.s

static get_bookmarks()
Returns a list of all existing shallot.Bookmarks.Bookmark instances.

static has_bookmarks()
Returns True if there are any bookmarks stored.

static move_bookmark_down(id)
Moves a bookmark downwards in its collection.

Parameters id – The bookmark id this call is about (See shallot.Bookmarks.Bookmark.id).

26 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

static move_bookmark_to_folder(id, folder)
Moves a bookmark to another subcollection.

Parameters

• id – The bookmark id this call is about (See shallot.Bookmarks.Bookmark.id).

• folder – The new subcollection (as list of strings).

static move_bookmark_up(id)
Moves a bookmark upwards in its collection.

Parameters id – The bookmark id this call is about (See shallot.Bookmarks.Bookmark.id).

static remove_bookmark(id)
Removes a bookmark.

Parameters id – The bookmark id this call is about (See shallot.Bookmarks.Bookmark.id).

class shallot.ConfigurationValue(name, defaultvalue, category=0, description='', longdescrip-
tion='', changehint=None)

Bases: shallot._ApiProxy

Abstract base class for a configuration value.

Parameters

• name – The config value name.

• defaultvalue – The default value.

• category – The category. One of shallot.ConfigurationValue.Category.

• description – The short description.

• longdescription – The long description.

• changehint – A label hint for change buttons in user interfaces.

class Category
Bases: object

Categories of shallot.ConfigurationValue implementations. They are used for grouping them in the dialogs.
There is no difference in behavior implied by this choice.

set_value(value)
Sets the value.

Parameters value – The new value.

value()
Returns the current value.

class shallot.DetailColumn(name, displayname, positionGroup=None, positionIndex=None,
sort_doTypediff=True, defaultWidth=- 1, isRightAligned=False)

Bases: shallot._ApiProxy

Abstract base class for a detail column for shallot.Filesystem.Node instances.

Those can e.g. be seen in the file list view, but can also be used internally by other places.

It encapsulates the retrieval logic and metadata for one piece of additional information a shallot.Filesystem.Node
can have (e.g. the filesize). Retrieving the values is designed to be asynchronous. Each instance represents one
column, while the actual logic is implemented in subclasses. For a new detail column, subclass this class and
implement at least shallot.DetailColumn.determine_value.

Parameters

3.1. shallot module 27

shallot - Scripting Documentation, Release 1.2.4764

• name – The internal name (must be unique).

• displayname – The label text.

• positionGroup – Controls display order. See Position Indexes for details. Use one of
the INDEX_* values from shallot.DetailColumn.

• positionIndex – Controls display order. See Position Indexes for details.

• sort_doTypediff – Shall sorting differ between files and directories?

• defaultWidth – The default width in pixels (optional).

• isRightAligned – If the column values are right aligned (optional).

apply_value(eurl, operation, value)
Set the detail value for a given eurl. Used for transferring details in file transfers (see shal-
lot.DetailColumn.register_as_transferrable). Override this method in custom subclasses or leave the de-
fault implementation.

Parameters

• eurl – The shallot.Eurl for which the value must be determined.

• operation – The shallot.Operations.Operation operation object.

• value – The detail value (as string).

compute_value(node, operation)
Queries the column value for a node.

Parameters

• node – The shallot.Filesystem.Node node for which the value must be determined.

• operation – The shallot.Operations.Operation operation object.

determine_value(node, operation)
Determines the column value for a node. Override this method in custom subclasses. Only used internally.
For querying foreign detail columns, use compute_value instead.

Parameters

• node – The shallot.Filesystem.Node node for which the value must be determined.

• operation – The shallot.Operations.Operation operation object.

static find_by_name(name)
Finds a shallot.DetailColumn implementation by name.

Parameters name – The detail column name.

static register_as_transferrable(index, detailcolumn)
Registers a shallot.DetailColumn for transferring those details in file transfers (e.g. when the user copies
files). This requires to implement some methods.

Parameters

• index – An integer which controls the order of transferring.

• detailcolumn – The shallot.DetailColumn detail column.

class shallot.Environment
Bases: object

Environment information and some utilities.

28 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

class Thread
Bases: shallot._ApiProxy

A thread executes code asynchronously. See also the Python documentation about threading. Although this
thread class is not related to the Python thread class (in terms of object orientation), you should understand
the general pitfalls which come with multithreading and you might find the Python synchronization tools
useful for avoiding those pitfalls. Note: It is strictly forbidden to ‘park’ a thread and wait for some external
event most of the time. Use a shallot.Environment.Timer for recurring tasks.

static execute_threaded(fct, *args, **kwargs)
Executes a function in a new shallot.Environment.Thread (and returns that). This avoids subclassing
and makes the code more compact. ‘args’ and ‘kwargs’ are additional parameters which become the
parameters in the actual call of ‘fct’.

Parameters fct – The function to execute.

run()
Contains the code to execute in this thread. Override this method in custom subclasses.

start()
Starts the execution of this thread and calls ‘run’ in that thread. Returns immediately.

class Timer
Bases: shallot._ApiProxy

A timers executes some code recurringly in some time interval.

is_started()
Returns if the timer is currently active.

run()
Contains the code to execute. Override this method in custom subclasses.

start(interval)
Starts the timer, which executes ‘run’ each ‘interval’ milliseconds. Returns immediately.

Parameters interval – The interval in milliseconds.

static start_in_timer(fct, interval, *args, **kwargs)
Starts a function in a shallot.Environment.Timer (and returns that). This avoids subclassing and makes
the code more compact. ‘args’ and ‘kwargs’ are additional parameters which become the parameters
in the actual call of ‘fct’.

Parameters
• fct – The function to execute.
• interval – The interval in milliseconds.

stop()
Stops the timer.

class shallot.Eurl
Bases: object

A EURL.

You can get instances with global methods like shallot.Eurl.create and shallot.Eurl.from_string.

Please note: Instances can be associated with any kind of elements in the filesystem (files, directories, links, . . .).
It might also point to something which does not exist at all. The documentation sometimes explicitly makes a
difference between those kinds (files, directories, links, . . . ; often called ‘node type’). But it often uses the term
‘file’ implicitly while meaning all kinds of elements; assuming that e.g. a directory is just a special kind of a
file. It should be clear from the particular context which meaning applies.

Can’t be constructed directly.

3.1. shallot module 29

shallot - Scripting Documentation, Release 1.2.4764

as_string()
Returns the textual value. This is what shallot.Eurl.from_string would expect as parameter.

basename()
Returns the last path segment. This is the text behind the last slash. Examples: “baz” for file:///foo/bar/baz.
“” for file:///.

static create(scheme, hostname, path)
Returns a shallot.Eurl from three parts. The structure is scheme://hostname/pa/th.

Parameters

• scheme – The scheme part.

• hostname – The hostname.

• path – The path.

enwrap_with_outer_url(scheme, hostname, path)
Returns a new shallot.Eurl containing this one packed as embedding and new outer parts scheme, hostname
and path. Example: scheme:/[file:///a/b/c.zip]/hostname/p/a/t/h for file:///a/b/c.zip.

Parameters

• scheme – The scheme part of the new outer eurl.

• hostname – The hostname of the new outer eurl.

• path – The path of the new outer eurl.

static from_string(s)
Returns a shallot.Eurl from a string.

Parameters s – The eurl string. This is what shallot.Eurl.as_string would return.

has_inner_urls()
Checks if this shallot.Eurl has embeddings. Examples: true for foo:/[bar:///foo]/host/. false for foo://host/.

has_parent_segment()
Checks if this shallot.Eurl has a parent segment. This indicates if shallot.Eurl.parent_segment would return
0.

hostname()
Returns the hostname part (from the outer url of this shallot.Eurl). Examples: “livingroom-pc” for
smb://livingroom-pc/foo/bar/baz. “” for file:///foo/bar/baz.

is_prefix_of(eurl)
Checks if this shallot.Eurl is a prefix of another one. This is not an equivalent to a string comparison but it
checks parent relationships according to shallot.Eurl.parent_segment.

Parameters eurl – The longer shallot.Eurl.

outer_url()
Returns a new shallot.Eurl containing only the outer part of this one (strips the embeddings). Example:
foobar://host/foo/bar/baz for foobar:/[zip:/[file:///a/b/c.zip]//d/e]//foo/bar/baz.

outer_url_is_root_directory()
Checks if this shallot.Eurl is a root path (with or without embeddings). Examples: True for foo://host/.
False for foo://host/a. True for foo:/[bar:///goo]/host/. False for foo:/[bar:///goo]/host/a. True for
foo:/[bar:///goo]//. False for foo:/[bar:///goo]//a.

outermost_inner_eurl()
Returns a new shallot.Eurl containing only the embedding of this one. Example: zip:/[file:///a/b/c.zip]//d/e
for foobar:/[zip:/[file:///a/b/c.zip]//d/e]//foo/bar/baz.

30 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

parent_segment()
Returns the parent shallot.Eurl. At first, this traverses path segments. For a root path eurl
with embeddings, it returns the embedding. If none are available, it returns 0. Examples:
foo://host/foo for foo://host/foo/bar. foo://host/ for foo://host/boo. foo:/[bar://host/goo]/anotherhost/ for
foo:/[bar://host/goo]/anotherhost/boo. bar://host/foo for foo:/[bar://host/foo]/host/. 0 for foo://host/.

path()
Returns the path part (from the outer url of this shallot.Eurl). Examples: “/foo/bar/baz” for
smb://livingroom-pc/foo/bar/baz. “/foo/bar/baz” for file:///foo/bar/baz. “/” for file:///.

root()
Returns the root shallot.Eurl from this one. Example: zip:/[file:///a/b/c.zip]// for
zip:/[file:///a/b/c.zip]//foo/bar/baz.

scheme()
Returns the scheme (from the outer url of this shallot.Eurl). This is what comes before the ://. Example:
“file” for file:///foo/bar/baz.

with_appended_segment(segment)
Returns a new shallot.Eurl from this one with “/basename” appended. The parameter is assumed to be a
single path segment.

Parameters segment – The basename to be appended.

with_appended_segments(path)
Returns a new shallot.Eurl with path segments “/pa/t/h/” appended. The parameter may contain `”/”`s for
dividing path segments.

Parameters path – The path segments to be appended, like “foo/bar”.

class shallot.Exceptions
Bases: object

Everything about exceptions.

exception ArgumentException(details=None, message=None, *, isResumeable=True, detail-
sAreInteresting=None, _class='')

Bases: shallot.Exceptions.ProgramException

Shallot exception for failed operation due to invalid arguments given to some program part. It typically al-
lows resume but not retry (special cases may override each of them). Read more about Shallot Exceptions.

See shallot.Exceptions.ScriptedException.__init__ for details.

exception IOException(details=None, message=None, *, isRetryable=None,
autoRetryRecommendedIn=- 1, detailsAreInteresting=None, _class='')

Bases: shallot.Exceptions.RuntimeException

Shallot exception in IO. It allows resume and typically allows retry (special cases may override each of
them). Read more about Shallot Exceptions.

See shallot.Exceptions.ScriptedException.__init__ for details.

exception ProgramException(details=None, message=None, *, isResumeable=True, detail-
sAreInteresting=None, _class='')

Bases: shallot.Exceptions.ScriptedException

Shallot exception for program errors (typically logical stuff) in the program or plugin. It typically allows
resume but no retry (special cases may override each of them). Read more about Shallot Exceptions.

See shallot.Exceptions.ScriptedException.__init__ for details.

3.1. shallot module 31

shallot - Scripting Documentation, Release 1.2.4764

exception RuntimeException(details=None, message=None, *, isRetryable=None,
autoRetryRecommendedIn=- 1, detailsAreInteresting=None,
_class='')

Bases: shallot.Exceptions.ScriptedException

Shallot exception for failed operation due to (often external) runtime effects. It allows resume and option-
ally allows retry (special cases may override each of them). Read more about Shallot Exceptions.

See shallot.Exceptions.ScriptedException.__init__ for details.

exception ScriptedException(details=None, message=None, *, isRuntime=None, isResume-
able=None, isRetryable=None, autoRetryRecommendedIn=- 1,
detailsAreInteresting=None, _class='')

Bases: Exception

The Shallot exception class.

Parameters

• details – Detail text.

• message – Message text.

• isRuntime – Is a runtime error (instead of a program logic error).

• isResumeable – Is resumeable.

• isRetryable – Is retryable.

• detailsAreInteresting – If the details contain information which is directly inter-
esting for (and consumable by) the end user.

• autoRetryRecommendedIn – Recommended retry interval in milliseconds.

• _class – Only used internally.

isExceptionClass(classname)
Checks if this exception is instance of a given exception class.

Parameters classname – A exception class name (as string).

class shallot.FilePropertyDialog
Bases: object

The file property dialog.

class Tab(title, properties)
Bases: shallot._ApiProxy

Abstract base class for a tab in the Properties dialog. It provides content and can also offer user interactions.
See shallot.FilePropertyDialog.Tab.register for registering custom implementations to shallot.

Parameters

• title – The title text for this tab.

• properties – A list of shallot.FilePropertyDialog.Tab.PropertyConfig instances. Each
instances specifies one piece of information

you want to provide.

class PropertyButtonConfig(label, fct)
Bases: object

Definitions for buttons in a shallot.FilePropertyDialog.Tab.PropertyConfig.
Parameters

• label – The button text.

32 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

• fct – The function to execute when the user clicks on the button.
_idcounter = 0

class PropertyConfig(title, propertytype, buttons=[])
Bases: object

Definitions for properties, which present a piece of information in a shallot.FilePropertyDialog.Tab.
Parameters

• title – The property title/name.
• propertytype – The value type. This controls what you have to return in shal-

lot.FilePropertyDialog.Tab.update_widget and how it is displayed. See the PROPER-
TYTYPE_* constants.

• buttons – A list of shallot.FilePropertyDialog.Tab.PropertyButtonConfig specifying
which buttons to show for offering user interaction.

class PropertyType
Bases: object

A type of a single property. Used in shallot.FilePropertyDialog.Tab.PropertyConfig.

_buttonTriggered(k)

_updateWidget(i, operation, widgetptr)

nodes()
Returns a list of shallot.Filesystem.Node containing the nodes to show (typically one).

refresh()
Reloads the content in the dialog (typically called after the external situation has changed so the dialog
shows outdated information).

static register(tabclass, positionGroup=None, positionIndex=None)
Registers a shallot.FilePropertyDialog.Tab implementation for making its content available in the
Properties dialog.

Parameters
• positionGroup – Controls display order. See Position Indexes for details. Use one

of the INDEX_* values from shallot.FilePropertyDialog.Tab.
• positionIndex – Controls display order. See Position Indexes for details.
• tabclass – A subclass of shallot.FilePropertyDialog.Tab.

selected_index_for_property(index)
For a shallot.FilePropertyDialog.Tab.PropertyType.StringMap property, this returns the index of the
row selected by the user in the dialog (or -1 for no selection). It is not allowed to call it for other
properties.

update_widget(i, operation)
Provides the actual content. Returns a value depending on the type choice in shal-
lot.FilePropertyDialog.Tab.PropertyConfig. Override this method in custom subclasses.

Parameters
• i – The index (in the same order as the properties constructor parameter).
• operation – A shallot.Operations.Operation instance.

class TabPropertyIconTextBanner
Bases: object

Represents values for image/text banners as used for shallot.FilePropertyDialog.Tab.PropertyType.IconTextBanner.

add_icon(iconname, size=1.0)
Adds an icon to the banner.

Parameters

3.1. shallot module 33

shallot - Scripting Documentation, Release 1.2.4764

• iconname – The name of the icon to append.
• size – Icon size (not in pixels but relative to the default).

add_text(text)
Adds text to the banner.

Parameters text – The text to append.

static _tabFactory(tabclass)

class shallot.FileSearch
Bases: object

File searches.

class SearchCriterion(factory)
Bases: shallot._ApiProxy

Abstract base class for a search criterion. It implements custom file search filters. Imple-
ment this class as well as shallot.FileSearch.SearchCriterionFactory and register this pair with shal-
lot.FileSearch.SearchCriterionFactory.register.

Each implementation must offer a constructor with this signature. It must forward the factory parameter
to this constructor.

_configure(info)

configure(info)
Asks some questions to the user (with info parameter) in order to determine a configuration and returns
it as a list of strings. Some other methods must be able to interpret this list in order to get back this
configuration. Override this method in custom subclasses.

Parameters info – A shallot.Actions.ExecutionInfo execution info object.

match(operation, eurl)
Determines if a file matches the configured search criteria (returns bool). Override this method in
custom subclasses. Use searchspec for getting the current configuration.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl on which the filter logic must act.

searchspec()
Returns the current search configuration as string list.

class SearchCriterionFactory(key, ctype, description)
Bases: shallot._ApiProxy

A factory for a shallot.FileSearch.SearchCriterion class.

Call this constructor from subclasses.

Parameters

• key – A short string used as key for this criterion.

• ctype – The type of your shallot.FileSearch.SearchCriterion implementation to create.

• description – The short description (as shown in menus).

_construct()

get_searchspec_description(val)
Returns the description of a search configuration (for displaying in the user interface). Override this
method in custom subclasses or leave the default implementation.

Parameters val – The search configuration as string list.

34 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

is_visible_for(operation, node)
Determines if this search criterion should be offered for a node. Override this method in custom
subclasses or leave the default implementation.

Parameters
• operation – The shallot.Operations.Operation operation object.
• node – The shallot.Filesystem.Node node for which the visibility must be determined.

static register(criterionfactory, positionGroup=None, positionIndex=None)
Registers a custom shallot.FileSearch.SearchCriterionFactory instance for offering custom file search-
ing filters.

Parameters
• criterionfactory – An instance of shallot.FileSearch.SearchCriterionFactory.
• positionGroup – Controls display order. See Position Indexes for details. Use one

of the INDEX_* values from shallot.FileSearch.SearchCriterionFactory.
• positionIndex – Controls display order. See Position Indexes for details.

class shallot.Filesystem
Bases: object

The filesystem.

class Handler
Bases: shallot._ApiProxy

Abstract base class for a custom filesystem handler. Subclass and register it for implementing a new virtual
filesystem, which lets new nodes appear somewhere in the filesystem tree and controls how to handle them.
Use shallot.Filesystem.Handler.register for registration.

_configureItems(op, itemlist)

_getActions(eurls)

_getCustomAttributes(op, eurl)

_getFileContent(op, eurl)

_getMtime(op, eurl)

_setMtime(op, eurl, itime)

can_create_directory(operation, eurl)
Is it allowed to create subdirectories in a certain directory? Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

can_create_file(operation, eurl)
Is it allowed to create files in a certain directory? Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

can_create_link(operation, eurl)
Is it allowed to create a link in a certain directory? Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

can_delete_item(operation, eurl)
Is it allowed to delete a certain file/directory/link/. . . ? Override this method in custom subclasses.

Parameters

3.1. shallot module 35

shallot - Scripting Documentation, Release 1.2.4764

• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

can_get_filecontent(operation, eurl)
Is it allowed to get the content of a certain file? Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

can_rename_item(operation, src)
Is it allowed to move a certain file/directory/link/. . . ? Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• src – The shallot.Eurl address pointing to the potential item to be moved.

configure_item(operation, node)
Configure a newly created node (e.g. setting another icon or changing the display name). Override
this method in custom subclasses or leave the default implementation.

Parameters
• operation – The shallot.Operations.Operation operation object.
• node – The shallot.Filesystem.Node filesystem node to configure.

create_directory(operation, eurl)
Create a directory. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

create_file(operation, eurl, outstream, handlertransfer)
Creates a file with some content. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• outstream – the content stream to be transferred into the new file
• handlertransfer – shallot.Operations.HandlerTransfer may be used for some bet-

ter integration, like cancel support and progress monitoring.

create_link(operation, eurl, tgt)
Create a link. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• tgt – The link destination path (as string).

delete_item(operation, eurl)
Delete a file/directory/link/. . . Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

get_actions(eurls)
Which actions (see former example) are to be offered for certain files? Override this method in custom
subclasses.

Parameters eurls – A list of shallot.Eurl addresses this call is referred to.

get_customattributes(operation, eurl)
Returns a dict<string,string> with custom attributes for a node. Override this method in custom sub-
classes or leave the default implementation. In contrast to extended attributes, those ones are not

36 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

directly stored in the filesystems, but are managed in a handler specific way (e.g. file permissions).
Parameters

• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

get_extendedattribute(operation, eurl, attribname)
Gets the value for a particular extended attribute. Override this method in custom subclasses or
leave the default implementation. Extended attributes are all kinds of properties of a file which aren’t
handled otherwise. It can contain filesystem’s extended attributes, permission information and more.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• attribname – The attribute name.

get_extendedattribute_size(operation, eurl, attribname)
Returns the size (in byte) of the value for a particular extended attribute. Override this method in
custom subclasses or leave the default implementation. Extended attributes are all kinds of properties
of a file which aren’t handled otherwise. It can contain filesystem’s extended attributes, permission
information and more.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• attribname – The attribute name.

get_file_content(operation, eurl)
Get the content of a file as a shallot.Streaming.ReadDataDevice. Override this method in custom
subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

get_linktarget(operation, eurl)
Resolve a link. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

get_mimetype(operation, eurl)
Determine mime type of a file. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

get_mtime(operation, eurl)
Determine the mtime of a file. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

get_size(operation, eurl)
Determine the size of a file. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

get_type(operation, eurl)
Determine if a file is regular, or a dir, or a link, . . . Override this method in custom subclasses.

Parameters

3.1. shallot module 37

shallot - Scripting Documentation, Release 1.2.4764

• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

itemlist(operation, eurl, nodetype, nodelist)
Determine a list of subelements in a certain directory. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• nodetype – Which kind of items are requested. See shallot.Filesystem.NodeType.
• nodelist – A shallot.Filesystem.NodeList object which controls the entry list for the

referred directory. Operate on this object for adding children.

list_extendedattributes(operation, eurl)
Returns a list of extended attributes which exist for a location. Override this method in custom sub-
classes or leave the default implementation. Extended attributes are all kinds of properties of a file
which aren’t handled otherwise. It can contain filesystem’s extended attributes, permission informa-
tion and more.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.

static register(scheme, handler)
Registers a shallot.Filesystem.Handler filesystem handler implementation.

Parameters
• scheme – The scheme name (first part in a shallot.Eurl, like file).
• handler – The shallot.Filesystem.Handler filesystem handler.

remove_extendedattribute(operation, eurl, attribname)
Removes an extended attribute. Override this method in custom subclasses or leave the default im-
plementation. Extended attributes are all kinds of properties of a file which aren’t handled otherwise.
It can contain filesystem’s extended attributes, permission information and more.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• attribname – The attribute name.

rename_item(operation, src, destpath)
Move a file/directory/link/. . . to somewhere else (can be a simple renaming). Override this method in
custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• src – The shallot.Eurl address pointing to the item to be moved.
• destpath – The new path for the src item.

set_customattribute(operation, eurl, key, value)
Sets a custom attribute to an entry. Override this method in custom subclasses or leave the default
implementation. See also get_customattributes.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• key – The attribute key.
• value – The attribute value.

set_extendedattribute(operation, eurl, attribname, value)
Sets the value for a particular extended attribute. Override this method in custom subclasses or leave
the default implementation. Extended attributes are all kinds of properties of a file which aren’t
handled otherwise. It can contain filesystem’s extended attributes, permission information and more.

38 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• attribname – The attribute name.
• value – The new attribute value (as byte string).

set_mtime(operation, eurl, mtime)
Set the mtime of a file. Override this method in custom subclasses.

Parameters
• operation – The shallot.Operations.Operation operation object.
• eurl – The shallot.Eurl address this call is referred to.
• mtime – The datetime.datetime, which specifies the new modification time.

class Node
Bases: object

A model representation of a location in the filesystem tree. It represents stuff like a file or a directory.
Those instances are used at many places for all kinds of operations.

Please note: Instances can be associated with any kind of elements in the filesystem (files, directories, links,
. . .). It might also point to something which does not exist at all (see parentnode). The documentation
sometimes explicitly makes a difference between those kinds (files, directories, links, . . . ; often called
‘node type’). But it often uses the term ‘file’ implicitly while meaning all kinds of elements; assuming that
e.g. a directory is just a special kind of a file. It should be clear from the particular context which meaning
applies.

Can’t be constructed directly.

add_detail(column)
Adds a detail to this node.

Parameters column – The shallot.DetailColumn instance to add.

eurl()
Return the shallot.Eurl entry address.

ishidden()
Returns if the node is hidden.

Note: It’s not difficult for the user to also show the hidden items.

nodetype()
Returns the shallot.Filesystem.NodeType node type.

set_displayname(displayname)
Sets the displayed name of the node.

set_hidden(value)
Sets if the node is hidden.

See also ishidden().
Parameters value – If the node shall be visible (boolean).

set_icon(icon)
Sets the node icon.

class NodeList
Bases: object

A list editor for a filesystem node list. Thay are mainly used for specifying child nodes in shal-
lot.Filesystem.Handler.itemlist and provide some help there. In most cases, you should just use shal-
lot.Filesystem.NodeList.set_items.

3.1. shallot module 39

shallot - Scripting Documentation, Release 1.2.4764

Can’t be constructed directly.

add_item(item)
Adds a new children to the list, directly showing that in the user interface, while you can proceed
filling the list. Please read shallot.Filesystem.NodeList.begin_iterative_adding as well! In most cases,
you don’t need this function.

Parameters item – A the new children node. This must be the basename.

begin_iterative_adding()
Must be called before you begin to iteratively fill the children list
(e.g. with shallot.Filesystem.NodeList.add_item). You must also call shal-
lot.Filesystem.NodeList.end_iterative_adding afterwards.

end_iterative_adding()
Must be called after you iteratively filled the children list with shallot.Filesystem.NodeList.add_item.
This automatically removes all the old nodes, which you haven’t added in this session.

set_items(items)
Sets a new list content. This function is all you need in most situations. For iteratively
adding nodes, which makes the intermediate results visible in the user interface, see shal-
lot.Filesystem.NodeList.add_item.

Parameters items – A list of strings providing the new children nodes. The list must
contain the basenames of all existing children (with the node type you got as argument).

class NodeType
Bases: object

Enumeration of types a shallot.Filesystem.Node can have.

static create_node(eurl, handler, nodetype, parentnode, doinsert=True, showInitialLoad-
ingLabel=True, hidden=False)

Creates a new shallot.Filesystem.Node for placing it into the model. If such a node (with the same eurl
for the same parent node) does not exist, it generates a new one. If there already is such a node alive, but
currently not placed in the model, it recycles this one. This can happen when references exist to a node
which is not yet inserted or which is removed meanwhile. It is not allowed to call this method when such
a node already exists in the model. Use this function for getting a shallot.Filesystem.Node, which is to be
added to the model now or later. It is typically used within a shallot.Filesystem.Handler implementation.

Parameters

• eurl – The shallot.Eurl of the new item.

• handler – The shallot.Filesystem.Handler of the new node. This must always be the
same one as the handler registered for the scheme of the eurl!

• nodetype – The shallot.Filesystem.NodeType node type.

• parentnode – The shallot.Filesystem.Node parent node.

• doinsert – If this function shall actually add the node to the model (to be exact, in some
situations, this will not actually take place nonetheless).

• showInitialLoadingLabel – If a ‘loading. . . ’ label shall be visible at beginning.

• hidden – If the node shall be created as hidden one. See also shal-
lot.Filesystem.Node.ishidden.

static find_nodes_for_eurl(eurl)
Get a list of shallot.Filesystem.Node for a shallot.Eurl. If it is unknown to the model so far, it tries to build
them. In typical cases, this list either contains one element, or is empty if the filesystem handlers decide
that this file does not exist. But in some cases, there is also more than one node for one shallot.Eurl (when

40 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

the Eurl appears on more than one place in the tree). It only returns nodes, which are ‘alive’, i.e. which
have a living parent and which are a child of this parent.

static get_or_create_node(eurl, handler, nodetype, parentnode, doinsert=True, showInitial-
LoadingLabel=True, hidden=False)

Returns a shallot.Filesystem.Node for using it as a child node in the model. It either creates a new one,
if there currently is no node for this eurl in this parentnode, or returns the existing one. Even for existing
ones, this call can change the nodetype of that node.

Parameters

• eurl – The shallot.Eurl of the new node.

• handler – The shallot.Filesystem.Handler of the new node. This must always be the
same one as the handler registered for the scheme of the eurl!

• nodetype – The shallot.Filesystem.NodeType node type.

• parentnode – The shallot.Filesystem.Node parent node.

• doinsert – If this function shall actually add the node to the model (to be exact, in some
situations, this will not actually take place nonetheless).

• showInitialLoadingLabel – If a ‘loading. . . ’ label shall be visible at beginning.

• hidden – If the node shall be created as hidden one. See also shal-
lot.Filesystem.Node.ishidden.

static refresh(eurl, forceFindParent=False, withDetails=True)
Request to refresh the internal model information for a shallot.Eurl. This may be a place which is already
known (then a change of some metadata or the removal is detected) or a formerly unknown place (then
new nodes get inserted in the model).

Parameters

• eurl – The shallot.Eurl of the node.

• forceFindParent – Forcefully create such model information if unknown before.

• withDetails – If detail columns assigned to an existing node should also be updated.

static try_get_nodes_for_eurl(eurl)
Returns a list of shallot.Filesystem.Node for a shallot.Eurl. It only considers the current state of the in-
memory model. It will only return nodes which are already known to the model so far. This operation is
cheaper and handling only the known nodes is sufficient in many situations. In typical cases, this list either
contains one element, or is empty. But in some cases, there is also more than one node for one shallot.Eurl
(when the Eurl appears on more than one place in the tree). It only returns nodes, which are ‘alive’, i.e.
which have a living parent and which are a child of this parent.

class shallot.IntlStringMap(**stringdicts)
Bases: object

A multi-language string map used for localization of plugins.

Internally it uses shallot.IntlStringMap.IntlString instances, but is more convenient for dealing with a larger
amount of strings.

Creates a map of internationalized strings. For each keyword-argument, this map will get a member with the
key name as member name. The values are dictionaries in the same form as for shallot.IntlStringMap.IntlString.
The members will be the best available language variants as plain Python strings.

Example: Strings = shallot.IntlStringMap(Foo = {“en”:”foo”, “it”:”Fuh”}, Bar = {“en”:”bar”,
“it”:”Barra”})

Then Strings.Foo might contain the Python string “Fuh”.

3.1. shallot module 41

shallot - Scripting Documentation, Release 1.2.4764

class IntlString(strings)
Bases: object

A multi-language string.

Creates a multi-language string by a dictionary, considering the keys as language code and the values as
the string in that language.

Example: shallot.IntlStringMap.IntlString({‘en’:’yes’, ‘de’:’ja’})

static _normalizecode(code)

get()
Returns the best variant as plain Python string, depending on the current user interface language.

map
A map of shallot.IntlStringMap.IntlString instances.

class shallot.Logging
Bases: object

Methods for logging.

static log_debug(s)
Logs a message with debug severity.

Parameters s – The message.

static log_error(s)
Logs a message with message severity.

Parameters s – The message.

static log_info(s)
Logs a message with info severity.

Parameters s – The message.

static log_warning(s)
Logs a message with warning severity.

Parameters s – The message.

class shallot.MainWindow
Bases: object

A Shallot main window.

static current()
Returns the current shallot.MainWindow.

get_current_directory_node()
Gets the shallot.Filesystem.Node selected in the current view.

jump_to_eurl(eurl)
Let the current view jump to another location.

Parameters eurl – The shallot.Eurl address to jump to.

static open_items(eurls)
Opens a list of files, largely as if the user had doubleclicked on them.

Parameters eurls – a list of shallot.Eurl.

class shallot.Operations
Bases: object

42 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

Everything about operations on the filesystem.

class FilesystemOperation
Bases: object

A high-level provider of filesystem operations. It is always based on the transaction of a shal-
lot.Operations.Operation and also accessible from such an instance.

Some operations allow to specify an shallot.Operations.FilesystemOperationProgressMonitor. You
can specify an instance for getting some additional functionaly, like progress notification, con-
flict resolution and more. Please note that not each operation uses each aspect of shal-
lot.Operations.FilesystemOperationProgressMonitor (e.g. some will not do any conflict resolution).

Can’t be constructed directly.

can_copy_item(src, dest)
Can we copy a given entry?

Parameters
• src – The shallot.Eurl of the item to be copied.
• dest – The shallot.Eurl destination path. If it is not known, use None.

can_create_directory(eurl)
Can we create a given directory?

Parameters eurl – The shallot.Eurl of the considered item.

can_create_file(eurl)
Can we create a given file?

Parameters eurl – The shallot.Eurl of the considered item.

can_create_link(eurl)
Can we create a given link?

Parameters eurl – The shallot.Eurl of the considered item.

can_delete_item(eurl)
Can we delete a given entry?

Parameters eurl – The shallot.Eurl of the considered item.

can_get_filecontent(eurl)
Can we get the file content for an entry?

Parameters eurl – The shallot.Eurl of the considered item.

can_move_item(src, dest)
Can we move a given entry?

Parameters
• src – The shallot.Eurl of the item to be moved.
• dest – The shallot.Eurl destination path. If it is not known, use None.

copy_item(src, tgt, progressmon)
Copy an entry.

Parameters
• src – The shallot.Eurl of the item to be copied.
• tgt – The shallot.Eurl of the new destination.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

copy_items(src, tgt, progressmon)
Copy entries.

Parameters
• src – List of shallot.Eurl of the item to be copied.

3.1. shallot module 43

shallot - Scripting Documentation, Release 1.2.4764

• tgt – The shallot.Eurl of the new common parent destination.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

create_directory(eurl, progressmon)
Creates a directory.

Parameters
• eurl – The shallot.Eurl of the new directory.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

create_file(eurl, contentdevice, progressmon)
Create a file.

Parameters
• eurl – The shallot.Eurl of the new file.
• contentdevice – a shallot.Streaming.ReadDataDevice content device.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

create_link(eurl, tgt, progressmon)
Creates a link.

Parameters
• eurl – The shallot.Eurl of the new link.
• tgt – Target path of this link.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

delete_directory_if_empty(eurl, progressmon)
Delete a directory entry if empty.

Parameters
• eurl – The shallot.Eurl of the directory to delete.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

delete_item(eurl, progressmon)
Delete an entry.

Parameters
• eurl – The shallot.Eurl of the item to delete.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

get_extendedattribute(eurl, attribute)
Returns the value (as byte string) of an extended attribute value stored in the filesystem for an entry.

Parameters
• eurl – The shallot.Eurl of the considered item.
• attribute – The attribute key.

get_extendedattribute_size(eurl, attribute)
Returns the size of an extended attribute value stored in the filesystem for an entry.

Parameters
• eurl – The shallot.Eurl of the considered item.

44 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

• attribute – The attribute key.

get_file_content(eurl)
Gets the file content for an entry as shallot.Streaming.ReadDataDevice.

Parameters eurl – The shallot.Eurl of the considered item.

get_filesize(eurl)
Gets the file size in bytes for an entry.

Parameters eurl – The shallot.Eurl of the considered item.

get_linktarget(eurl)
Gets the link target for an entry (if it is a link).

Parameters eurl – The shallot.Eurl of the considered item.

get_type(eurl)
Gets the shallot.Filesystem.NodeType node type for an entry.

Parameters eurl – The shallot.Eurl of the considered item.

itemlist(eurl)
Gets a list of shallot.Eurl in a directory.

Parameters eurl – The shallot.Eurl of the directory to list.

itemlist_by_type(eurl, nodetype)
Gets a list of shallot.Eurl in a directory which have a certain type.

Parameters
• eurl – The shallot.Eurl of the directory to list.
• nodetype – The shallot.Filesystem.NodeType node type to fetch.

list_extendedattributes(eurl)
Lists all keys of extended attributes stored in the filesystem for an entry.

Parameters eurl – The shallot.Eurl of the considered item.

move_item(src, tgt, progressmon)
Move an entry.

Parameters
• src – The shallot.Eurl of the item to be moved.
• tgt – The shallot.Eurl of the new destination.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

move_items(src, tgt, progressmon)
Move entries.

Parameters
• src – List of shallot.Eurl of the item to be moved.
• tgt – The shallot.Eurl of the new common parent destination.
• progressmon – A shallot.Operations.FilesystemOperationProgressMonitor

instance for some additional functionality (or None). See shal-
lot.Operations.FilesystemOperation for details.

remove_extendedattribute(eurl, attribute)
Removes an extended attribute stored in the filesystem for an entry.

Parameters
• eurl – The shallot.Eurl of the considered item.
• attribute – The attribute key.

resolve_eurl_link(eurl)
Resolve a link as Eurl.

Parameters eurl – A shallot.Eurl to resolve.

3.1. shallot module 45

shallot - Scripting Documentation, Release 1.2.4764

resolve_eurl_link_nonrecursive(eurl)
Resolve a link as Eurl without recursion.

Parameters eurl – A shallot.Eurl to resolve.

resolve_node_link(node)
Resolve a link as node.

Parameters node – A shallot.Filesystem.Node to resolve.

resolve_node_link_nonrecursive(node)
Resolve a link as node without recursion.

Parameters node – A shallot.Filesystem.Node to resolve.

set_extendedattribute(eurl, attribute, value)
Store the value of an extended attribute in the filesystem for an entry.

Parameters
• eurl – The shallot.Eurl of the considered item.
• attribute – The attribute key.
• value – The attribute value (as byte string).

class FilesystemOperationProgressMonitor(actionExecution=None)
Bases: shallot._ApiProxy

Abstract base class for progress monitors, used for monitoring progress of some operations in shal-
lot.Operations.FilesystemOperation and for conflict resolution.

It makes sense to directly instantiate this class in some cases.

Parameters actionExecution – Optional instance of shallot.Actions.ExecutionInfo. If
available, it provides some additional features

(e.g. the user may cancel the transfer).

_resolveConflicts(steps)

all_bytes()
How many bytes are to be transferred in total.

all_items()
How many items are to be transferred in total.

changed()
Reacts on progress changes. Override this method in custom subclasses or leave the default imple-
mentation.

done_bytes()
How many bytes are transferred so far.

done_items()
How many items are transferred so far.

estimation()
The current performance estimation as textual representation.

get_item_info_from()
The current source as textual representation.

get_item_info_to()
The current destination as textual representation.

has_bytes_info()
If the monitor currently has information about progress in terms of transferred bytes.

46 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

has_item_info()
If the monitor currently has information about progress in terms of item counts.

resolve_conflicts(steps)
Resolves upcoming filesystem conflicts. Override this method in custom subclasses or leave the
default implementation.

Parameters steps – A list of shallot.Operations.FilesystemOperationStep which stay in
conflict.

class FilesystemOperationStep
Bases: object

One step in a larger filesystem transfer running inside some operations in shal-
lot.Operations.FilesystemOperation.

Can’t be constructed directly.

class ConflictResolution
Bases: object

Enumeration of conflict resolution strategies.

conflict_description()
The conflict descrition text.

conflict_resolution()
The currently selected shallot.Operations.FilesystemOperationStep.ConflictResolution conflict reso-
lution.

conflict_resolution_different_destination_name_to()
The new destination name (if conflict_resolution is shallot.Operations.FilesystemOperationStep.ConflictResolution.UseDifferentDestinationName)

conflict_resolution_rename_destination_before_to()
The new destination name (if conflict_resolution is shallot.Operations.FilesystemOperationStep.ConflictResolution.RenameDestinationBefore)

effective_destination()
The effective destination shallot.Eurl location with applied conflict resolution strategies.

original_destination()
The original destination shallot.Eurl location.

set_conflict_resolve_merge_directories()
Set the conflict resolution to shallot.Operations.FilesystemOperationStep.ConflictResolution.MergeDirectories.

set_conflict_resolve_merge_directories_check_allowed()
Checks if it is allowed to solve this conflict by merging directories.

set_conflict_resolve_overwrite_destination()
Set the conflict resolution to shallot.Operations.FilesystemOperationStep.ConflictResolution.OverwriteDestination.

set_conflict_resolve_rename_destination_before(newname)
Set the conflict resolution to shallot.Operations.FilesystemOperationStep.ConflictResolution.RenameDestinationBefore.

set_conflict_resolve_skip()
Set the conflict resolution to shallot.Operations.FilesystemOperationStep.ConflictResolution.Skip.

set_conflict_resolve_use_different_destination_name(newname)
Set the conflict resolution to shallot.Operations.FilesystemOperationStep.ConflictResolution.UseDifferentDestinationName.

source()
The source shallot.Eurl location.

sourcetype()
The shallot.Filesystem.NodeType of the source.

3.1. shallot module 47

shallot - Scripting Documentation, Release 1.2.4764

class HandlerTransfer
Bases: object

Used for some additional functionality in some transfer operations in shallot.Filesystem.Handler instances.

Can’t be constructed directly.

increment_transferred_bytes(donebytes)
Notify that a certain amount of date (in byte) are transferred. This is used for progress monitoring.

respect_cancel()
Called from time to time for allowing the user to cancel the transfer.

class Operation
Bases: object

Transactional read and write filesystem accesses. Read more.

abort()
Aborts transaction dropping all pending changes.

commit()
Commits transaction applying all pending changes.

enable_detailscache()
Enable details caching.

fetch_container_file(eurl)
Fetches the container file for a eurl locally and returns the local path. Use this with care and only
if needed. In many cases working with streams is the better way! It returns nothing for an eurl
without embedded parts (like foo://[bar:///y]/x). If the outermost inner eurl represents a local file
path, it is directly returned without copying. You should always regard the available disk space. See
get_free_cachespace().

Parameters eurl – The shallot.Eurl location to fetch the container for.

fetch_container_file2(eurl, namehint)
Fetches the container file for a eurl locally and returns the local path. This is like fetch_container_file()
but with more options.

Parameters
• eurl – The shallot.Eurl location to fetch the container for.
• namehint – A small file name prefix for temporary files, like “tmp”.

fetch_file(eurl)
Fetches a file locally and returns the local path. Use this with care and only if needed. In many cases
working with streams is the better way! If the eurl represents a local file path, it is directly returned
without copying. You should always regard the available disk space. See get_free_cachespace().

Parameters eurl – The shallot.Eurl location to fetch the container for.

fetch_file2(eurl, namehint)
Fetches a file locally and returns the local path. This is like fetch_file() but with more options.

Parameters
• eurl – The shallot.Eurl location to fetch the container for.
• namehint – A small file name prefix for temporary files, like “tmp”.

filesystem()
Gets the shallot.Operations.FilesystemOperation filesystem operation object.

get_custom_data(eurl, key)
Gets stored custom data.

Parameters
• eurl – The shallot.Eurl instance you want to get data about (or None).

48 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

• key – Custom data key name.

get_detail_from_cache(eurl, column)
Gets a column value from cache.

Parameters
• eurl – The shallot.Eurl to get a detail value for.
• column – The shallot.DetailColumn to get a detail value for.

get_free_cachespace()
Returns the free disk space (in bytes) available for operations like fetch_container_file() or fetch_file().

is_detailscache_enabled()
Is details caching enabled?

set_custom_data(eurl, key, value)
Stores custom data.

Parameters
• eurl – The shallot.Eurl instance you want to store data about (or None).
• key – Custom data key name.
• value – Custom data value.

store_detail_in_cache(eurl, column, value)
Stores a column detail in cache.

Parameters
• eurl – The shallot.Eurl to store a detail value for.
• column – The shallot.DetailColumn to store a detail value for.
• value – The column value for this entry.

static create()
Creates a new shallot.Operations.Operation.

class shallot.PanelDetails
Bases: object

Everything about panel details.

class AbstractPanelDetailValueElement(type, value)
Bases: object

Abstract base class for an element of a panel detail row’s value. This can be something like a text, an icon
or a link button. See the subclasses.

class MultiSelectionPanelDetail(positionGroup=None, positionIndex=None, valueWidth-
Hint=4)

Bases: shallot._ApiProxy , shallot.PanelDetails.PanelDetail

Abstract base class for a detail panel entry, which occurs when multiple items are selected. See shal-
lot.PanelDetails.PanelDetail.register for registering custom implementations to shallot.

Parameters

• positionGroup – Controls display order. See Position Indexes for details. Use one of
the INDEX_* values from shallot.PanelDetails.PanelDetail.

• positionIndex – Controls display order. See Position Indexes for details.

• valueWidthHint – A width in centimeters to reserve for printing the values.

link_triggered(nodes, linktarget)
This method is called whenever the user triggers a link. Override in custom implementations if links
are used.

Parameters
• nodes – The selected list of shallot.Filesystem.Node object.

3.1. shallot module 49

shallot - Scripting Documentation, Release 1.2.4764

• linktarget – The link target string, as specified in shal-
lot.PanelDetails.PanelDetailValueElementButton.__init__.

set_value(detail, nodes, operation)
This method is called whenever an output must be determined for certain nodes. It must return a
list of 2-tuples (one for each row). Those are each name/value pairs with the label of that row and
the value (which is a list of shallot.PanelDetails.AbstractPanelDetailValueElement). For large waiting
times, you should just return an empty value list for your rows, start an asynchronous execution and
use shallot.PanelDetailInst.set_row in the end. Override this method in custom subclasses.

Parameters
• detail – A shallot.PanelDetailInst object for printing the details. Only used in ad-

vanced cases.
• nodes – The selected list of shallot.Filesystem.Node object.
• operation – The shallot.Operations.Operation operation object.

class PanelDetail
Bases: object

Abstract base class for a detail panel entry. See the subclasses.

_setValue(detail, nodes, op)

static register(detail)
Registers a shallot.PanelDetails.PanelDetail in the Shallot core.

Parameters detail – The shallot.PanelDetails.PanelDetail instance.

class PanelDetailInst(_detail)
Bases: object

The storage for detail value rows, which are the actual content of a shallot.PanelDetails.PanelDetail for an
actual file selection.

Can’t be constructed directly.

set_row(row, val)
Sets the value for one row.

Parameters
• row – The label of that row.
• val – The value (which is a list of shal-

lot.PanelDetails.AbstractPanelDetailValueElement).

class PanelDetailValueElementButton(text, target, autohide=True)
Bases: shallot.PanelDetails.AbstractPanelDetailValueElement

A link button (for executing some code on user behalf) as element of a panel detail
row’s value. Use shallot.PanelDetails.SingleSelectionPanelDetail.link_triggered or shal-
lot.PanelDetails.MultiSelectionPanelDetail.link_triggered for handling user actions.

Parameters

• text – The text.

• target – The link target name (will be passed to the handler function).

• autohide – If the button shall only be visible when the mouse cursor is in the details
panel.

class PanelDetailValueElementIcon(icon)
Bases: shallot.PanelDetails.AbstractPanelDetailValueElement

An icon as element of a panel detail row’s value.

Parameters icon – The icon name.

50 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

class PanelDetailValueElementString(text)
Bases: shallot.PanelDetails.AbstractPanelDetailValueElement

A piece of text as element of a panel detail row’s value.

Parameters text – The text.

class PanelDetailValueElementWaiting
Bases: shallot.PanelDetails.AbstractPanelDetailValueElement

A ‘waiting’ placeholder as element of a panel detail row’s value.

class SingleSelectionPanelDetail(positionGroup=None, positionIndex=None, val-
ueWidthHint=4)

Bases: shallot._ApiProxy , shallot.PanelDetails.PanelDetail

Abstract base class for a detail panel entry, which occurs when one item is selected. See shal-
lot.PanelDetails.PanelDetail.register for registering custom implementations to shallot.

Parameters

• positionGroup – Controls display order. See Position Indexes for details. Use one of
the INDEX_* values from shallot.PanelDetails.PanelDetail.

• positionIndex – Controls display order. See Position Indexes for details.

• valueWidthHint – A width in centimeters to reserve for printing the values.

link_triggered(node, linktarget)
This method is called whenever the user triggers a link. Override in custom implementations if links
are used.

Parameters
• node – The selected shallot.Filesystem.Node.
• linktarget – The link target string, as specified in shal-

lot.PanelDetails.PanelDetailValueElementButton.__init__.

set_value(detail, node, operation)
This method is called whenever an output must be determined for a certain node. It must return
a list of 2-tuples (one for each row). Those are each name/value pairs with the label of that row
and the value (which is a list of shallot.PanelDetails.PanelDetails.AbstractPanelDetailValueElement).
For large waiting times, you should just return a value list only containing a shal-
lot.PanelDetails.PanelDetailValueElementWaiting for your rows, start an asynchronous execution and
use shallot.PanelDetailInst.set_row in the end. Override this method in custom subclasses.

Parameters
• detail – A shallot.PanelDetailInst object for printing the details. Only used in ad-

vanced cases.
• node – The selected shallot.Filesystem.Node.
• operation – The shallot.Operations.Operation operation object.

class shallot.Setting(name, description, group, isAdvancedSetting=False, isGlobal=False, isPer-
Fileview=False)

Bases: shallot._ApiProxy

Abstract base class for a scripted Shallot setting (those who have to be stored manually). See Shallot documen-
tation for details.

Parameters

• name – Internal name (must be unique).

• description – Description text.

• group – Group. One of shallot.Setting.GroupInfo.

3.1. shallot module 51

shallot - Scripting Documentation, Release 1.2.4764

• isAdvancedSetting – Is this an advanced setting?

• isGlobal – Does this setting regard global aspects (instead of per-directory aspects)?

• isPerFileview – Does this setting regard per-fileview aspects (instead of per-
mainwindow)?

class GroupInfo
Bases: object

Enumeration of groups to which a setting can belong. This is just a matter of grouping the for presentation.

_setvalue1(value)

_setvalue2(viewindex, value)

get_value(viewindex)
Get the currently set value. Override this method in custom subclasses.

Parameters viewindex – View index. Will be Nothing for per-mainwindow settings. Other-
wise a fileview index.

static register(setting)
Registers a shallot.Setting instance in Shallot.

Parameters setting – The shallot.Setting setting object.

set_value(value, viewindex=None)
Called from Shallot core when the value was set. Override this method in custom subclasses.

Parameters

• value – The value.

• viewindex – View index. Will be Nothing for per-mainwindow settings. Otherwise a
fileview index.

value_description(val)
Gets a human readable description text for a value. Override this method in custom subclasses.

Parameters val – The value.

class shallot.Streaming
Bases: object

Streams of binary data.

class BlobReadDataDevice(content)
Bases: shallot.Streaming.ReadDataDevice

A binary source backed by static binary content in a byte array.

For really large content (many megabytes), you should avoid creating complete copies but use one of the
other subclasses or implementing an own one.

Parameters content – The byte array containing the content.

getdata()
See shallot.Streaming.ReadDataDevice.

class ReadDataDevice
Bases: shallot._ApiProxy

A scripted source of binary content. Override this class for providing own binary content. You might often
find it more convenient to use one of the non-abstract subclasses.

_getdata()

52 Chapter 3. API reference

shallot - Scripting Documentation, Release 1.2.4764

getdata()
Returns a Python byte array containing the next available chunk of content data. This may either be
the complete content, or just the next part in an arbitrary size which is convenient in your situation. It
is allowed to return empty arrays whenever there is temporarily no data available. Return None when
the end of stream is reached. Override this method in custom subclasses.

read()
Reads a chuck of data as Python byte array. An empty array signals the stream ended.

readall()
Reads the complete data as Python byte array.

class StreamReadDataDevice(stream)
Bases: shallot.Streaming.ReadDataDevice

A binary source backed by a file object.

The file object must be opened in blocking mode (which is the typical one).

Parameters stream – The file object containing the content.

getdata()
See shallot.Streaming.ReadDataDevice.

class ThreadedReadDataDevice
Bases: shallot.Streaming.ReadDataDevice

A binary source dynamically created piecewise in a separate thread. Override this class and provide the
content generator within it.

_stop()
This is part of a particular piece of internal infrastructure and is typically not required to be used
directly.

getdata()
See shallot.Streaming.ReadDataDevice.

run()
This is the content generator function. Override this method in custom subclasses. Generate the
content in an arbitrary way and call write() once or iteratively until the complete content is written.
This method will automatically be executed in a separate thread.

write(content)
Appends a piece of data. Call this function from within the run() method.

Parameters content – The next piece of content as byte array.

class shallot.ThumbnailProvider
Bases: shallot._ApiProxy

Abstract base class for a thumbnail. It can implement new ways of generating thumbnail images for files.
Implement this class and register an instance with shallot.ThumbnailProvider.register.

get_thumbnail(operation, node, contenttype, width, height)
Returns the thumbnail. It must be a bytestring containing the image in a well known format (png, jpeg,
svg, . . .). Override this method in custom subclasses.

Parameters

• operation – The shallot.Operations.Operation operation object.

• node – The shallot.Filesystem.Node filesystem node to get a thumbnail for.

• contenttype – The content type of the original file.

3.1. shallot module 53

shallot - Scripting Documentation, Release 1.2.4764

• width – The requested thumbnail width in pixels.

• height – The requested thumbnail height in pixels.

static register(thumbnailprovider, positionGroup=None, positionIndex=None)
Registers a custom shallot.ThumbnailProvider instance for offering custom thumbnails.

Parameters

• thumbnailprovider – An instance of shallot.ThumbnailProvider.

• positionGroup – Controls execution order. See Position Indexes for details. Use one
of the INDEX_* values from shallot.ThumbnailProvider.

• positionIndex – Controls execution order. See Position Indexes for details.

class shallot._ApiProxy(native)
Bases: object

Common superclass for many classes in this interface.

This class mostly has internal meaning and does not directly offer any services to the plugin developer. Read
h_apiproxy.

_addmethod(methodsetter, methodname)

_native()

shallot._abstract()

shallot._computeindex(defaultcategory, category, clss, index)

shallot._isimplemented(fct)

shallot._nonreal()

shallot._optional(fct)

54 Chapter 3. API reference

PYTHON MODULE INDEX

s
shallot, 21

55

shallot - Scripting Documentation, Release 1.2.4764

56 Python Module Index

INDEX

Symbols
_ApiProxy (class in shallot), 54
_abstract() (in module shallot), 54
_addmethod() (shallot._ApiProxy method), 54
_buttonTriggered() (shal-

lot.FilePropertyDialog.Tab method), 33
_computeindex() (in module shallot), 54
_configure() (shallot.FileSearch.SearchCriterion

method), 34
_configureItems() (shallot.Filesystem.Handler

method), 35
_construct() (shal-

lot.FileSearch.SearchCriterionFactory
method), 34

_factory() (shallot.Actions static method), 25
_getActions() (shallot.Filesystem.Handler method),

35
_getCustomAttributes() (shal-

lot.Filesystem.Handler method), 35
_getFileContent() (shallot.Filesystem.Handler

method), 35
_getMtime() (shallot.Filesystem.Handler method), 35
_getdata() (shallot.Streaming.ReadDataDevice

method), 52
_idcounter (shallot.FilePropertyDialog.Tab.PropertyButtonConfig

attribute), 33
_isimplemented() (in module shallot), 54
_native() (shallot._ApiProxy method), 54
_nonreal() (in module shallot), 54
_normalizecode() (shallot.IntlStringMap.IntlString

static method), 42
_optional() (in module shallot), 54
_resolveConflicts() (shal-

lot.Operations.FilesystemOperationProgressMonitor
method), 46

_setMtime() (shallot.Filesystem.Handler method), 35
_setValue() (shallot.PanelDetails.PanelDetail

method), 50
_setvalue1() (shallot.Setting method), 52
_setvalue2() (shallot.Setting method), 52
_stop() (shallot.Streaming.ThreadedReadDataDevice

method), 53

_tabFactory() (shallot.FilePropertyDialog static
method), 34

_updateWidget() (shallot.FilePropertyDialog.Tab
method), 33

A
abort() (shallot.Operations.Operation method), 48
action() (shallot.Actions.ActionAction method), 22
Actions (class in shallot), 21
Actions.AbstractAction (class in shallot), 21
Actions.ActionAction (class in shallot), 21
Actions.ByRegExpPredicate (class in shallot),

22
Actions.DefaultPrecedenceValues (class in

shallot), 22
Actions.DontResolveLinksPredicate (class

in shallot), 22
Actions.ExecutionInfo (class in shallot), 22
Actions.ExecutionUserFeedback (class in

shallot), 23
Actions.ExecutionUserFeedback.MessageBoxButton

(class in shallot), 23
Actions.HideOnCurrentDirectoryLevelPredicate

(class in shallot), 24
Actions.HideOnSelectionLevelPredicate

(class in shallot), 24
Actions.KeyShortcutPredicate (class in shal-

lot), 24
Actions.OnDirectoriesPredicate (class in

shallot), 24
Actions.OnFilesPredicate (class in shallot), 24
Actions.OnLinksPredicate (class in shallot), 24
Actions.OnSingleEntrySelectionPredicate

(class in shallot), 24
Actions.PositionIndexPredicate (class in

shallot), 25
Actions.Predicate (class in shallot), 25
Actions.SubmenuAction (class in shallot), 25
add_bookmark() (shallot.Bookmarks static method),

26
add_changed_eurl() (shal-

lot.Actions.ExecutionInfo method), 22

57

shallot - Scripting Documentation, Release 1.2.4764

add_detail() (shallot.Filesystem.Node method), 39
add_icon() (shallot.FilePropertyDialog.TabPropertyIconTextBanner

method), 33
add_item() (shallot.Filesystem.NodeList method), 40
add_text() (shallot.FilePropertyDialog.TabPropertyIconTextBanner

method), 34
all_bytes() (shallot.Operations.FilesystemOperationProgressMonitor

method), 46
all_items() (shallot.Operations.FilesystemOperationProgressMonitor

method), 46
apply_value() (shallot.DetailColumn method), 28
as_string() (shallot.Eurl method), 29

B
basename() (shallot.Eurl method), 30
begin_iterative_adding() (shal-

lot.Filesystem.NodeList method), 40
Bookmarks (class in shallot), 25
Bookmarks.Bookmark (class in shallot), 25

C
can_copy_item() (shal-

lot.Operations.FilesystemOperation method),
43

can_create_directory() (shal-
lot.Filesystem.Handler method), 35

can_create_directory() (shal-
lot.Operations.FilesystemOperation method),
43

can_create_file() (shallot.Filesystem.Handler
method), 35

can_create_file() (shal-
lot.Operations.FilesystemOperation method),
43

can_create_link() (shallot.Filesystem.Handler
method), 35

can_create_link() (shal-
lot.Operations.FilesystemOperation method),
43

can_delete_item() (shallot.Filesystem.Handler
method), 35

can_delete_item() (shal-
lot.Operations.FilesystemOperation method),
43

can_get_filecontent() (shal-
lot.Filesystem.Handler method), 36

can_get_filecontent() (shal-
lot.Operations.FilesystemOperation method),
43

can_move_item() (shal-
lot.Operations.FilesystemOperation method),
43

can_rename_item() (shallot.Filesystem.Handler
method), 36

cancel() (shallot.Actions.ExecutionInfo method), 22
change_bookmark() (shallot.Bookmarks static

method), 26
change_bookmark_tags() (shallot.Bookmarks

static method), 26
changed() (shallot.Operations.FilesystemOperationProgressMonitor

method), 46
commit() (shallot.Operations.Operation method), 48
compute_value() (shallot.DetailColumn method),

28
ConfigurationValue (class in shallot), 27
ConfigurationValue.Category (class in shal-

lot), 27
configure() (shallot.FileSearch.SearchCriterion

method), 34
configure_item() (shallot.Filesystem.Handler

method), 36
conflict_description() (shal-

lot.Operations.FilesystemOperationStep
method), 47

conflict_resolution() (shal-
lot.Operations.FilesystemOperationStep
method), 47

conflict_resolution_different_destination_name_to()
(shallot.Operations.FilesystemOperationStep
method), 47

conflict_resolution_rename_destination_before_to()
(shallot.Operations.FilesystemOperationStep
method), 47

copy_item() (shallot.Operations.FilesystemOperation
method), 43

copy_items() (shal-
lot.Operations.FilesystemOperation method),
43

create() (shallot.Eurl static method), 30
create() (shallot.Operations static method), 49
create_directory() (shallot.Filesystem.Handler

method), 36
create_directory() (shal-

lot.Operations.FilesystemOperation method),
44

create_file() (shallot.Filesystem.Handler method),
36

create_file() (shal-
lot.Operations.FilesystemOperation method),
44

create_link() (shallot.Filesystem.Handler method),
36

create_link() (shal-
lot.Operations.FilesystemOperation method),
44

create_node() (shallot.Filesystem static method), 40
current() (shallot.MainWindow static method), 42

58 Index

shallot - Scripting Documentation, Release 1.2.4764

D
delete_directory_if_empty() (shal-

lot.Operations.FilesystemOperation method),
44

delete_item() (shallot.Filesystem.Handler method),
36

delete_item() (shal-
lot.Operations.FilesystemOperation method),
44

DetailColumn (class in shallot), 27
determine_value() (shallot.DetailColumn

method), 28
done_bytes() (shal-

lot.Operations.FilesystemOperationProgressMonitor
method), 46

done_items() (shal-
lot.Operations.FilesystemOperationProgressMonitor
method), 46

E
effective_destination() (shal-

lot.Operations.FilesystemOperationStep
method), 47

enable_detailscache() (shal-
lot.Operations.Operation method), 48

enabled() (shallot.Actions.AbstractAction method),
21

end_iterative_adding() (shal-
lot.Filesystem.NodeList method), 40

Environment (class in shallot), 28
Environment.Thread (class in shallot), 28
Environment.Timer (class in shallot), 29
enwrap_with_outer_url() (shallot.Eurl method),

30
estimation() (shal-

lot.Operations.FilesystemOperationProgressMonitor
method), 46

Eurl (class in shallot), 29
eurl() (shallot.Bookmarks.Bookmark method), 26
eurl() (shallot.Filesystem.Node method), 39
Exceptions (class in shallot), 31
Exceptions.ArgumentException, 31
Exceptions.IOException, 31
Exceptions.ProgramException, 31
Exceptions.RuntimeException, 31
Exceptions.ScriptedException, 32
execute() (shallot.Actions.ActionAction method), 22
execute_threaded() (shallot.Environment.Thread

static method), 29

F
fetch_container_file() (shal-

lot.Operations.Operation method), 48

fetch_container_file2() (shal-
lot.Operations.Operation method), 48

fetch_file() (shallot.Operations.Operation
method), 48

fetch_file2() (shallot.Operations.Operation
method), 48

FilePropertyDialog (class in shallot), 32
FilePropertyDialog.Tab (class in shallot), 32
FilePropertyDialog.Tab.PropertyButtonConfig

(class in shallot), 32
FilePropertyDialog.Tab.PropertyConfig

(class in shallot), 33
FilePropertyDialog.Tab.PropertyType

(class in shallot), 33
FilePropertyDialog.TabPropertyIconTextBanner

(class in shallot), 33
FileSearch (class in shallot), 34
FileSearch.SearchCriterion (class in shallot),

34
FileSearch.SearchCriterionFactory (class

in shallot), 34
Filesystem (class in shallot), 35
filesystem() (shallot.Operations.Operation

method), 48
Filesystem.Handler (class in shallot), 35
Filesystem.Node (class in shallot), 39
Filesystem.NodeList (class in shallot), 39
Filesystem.NodeType (class in shallot), 40
find_by_name() (shallot.DetailColumn static

method), 28
find_nodes_for_eurl() (shallot.Filesystem static

method), 40
folder() (shallot.Bookmarks.Bookmark method), 26
from_objectname() (shallot.Actions.ExecutionInfo

method), 22
from_string() (shallot.Eurl static method), 30
from_verb() (shallot.Actions.ExecutionInfo method),

22

G
get() (shallot.IntlStringMap.IntlString method), 42
get_actions() (shallot.Filesystem.Handler method),

36
get_bookmarks() (shallot.Bookmarks static

method), 26
get_current_directory_node() (shal-

lot.MainWindow method), 42
get_custom_data() (shallot.Operations.Operation

method), 48
get_customattributes() (shal-

lot.Filesystem.Handler method), 36
get_detail_from_cache() (shal-

lot.Operations.Operation method), 49

Index 59

shallot - Scripting Documentation, Release 1.2.4764

get_extendedattribute() (shal-
lot.Filesystem.Handler method), 37

get_extendedattribute() (shal-
lot.Operations.FilesystemOperation method),
44

get_extendedattribute_size() (shal-
lot.Filesystem.Handler method), 37

get_extendedattribute_size() (shal-
lot.Operations.FilesystemOperation method),
44

get_file_content() (shallot.Filesystem.Handler
method), 37

get_file_content() (shal-
lot.Operations.FilesystemOperation method),
45

get_filesize() (shal-
lot.Operations.FilesystemOperation method),
45

get_free_cachespace() (shal-
lot.Operations.Operation method), 49

get_item_info_from() (shal-
lot.Operations.FilesystemOperationProgressMonitor
method), 46

get_item_info_to() (shal-
lot.Operations.FilesystemOperationProgressMonitor
method), 46

get_linktarget() (shallot.Filesystem.Handler
method), 37

get_linktarget() (shal-
lot.Operations.FilesystemOperation method),
45

get_mimetype() (shallot.Filesystem.Handler
method), 37

get_mtime() (shallot.Filesystem.Handler method), 37
get_or_create_node() (shallot.Filesystem static

method), 41
get_searchspec_description() (shal-

lot.FileSearch.SearchCriterionFactory
method), 34

get_size() (shallot.Filesystem.Handler method), 37
get_thumbnail() (shallot.ThumbnailProvider

method), 53
get_type() (shallot.Filesystem.Handler method), 37
get_type() (shallot.Operations.FilesystemOperation

method), 45
get_value() (shallot.Setting method), 52
getdata() (shallot.Streaming.BlobReadDataDevice

method), 52
getdata() (shallot.Streaming.ReadDataDevice

method), 52
getdata() (shallot.Streaming.StreamReadDataDevice

method), 53
getdata() (shallot.Streaming.ThreadedReadDataDevice

method), 53

H
has_bookmarks() (shallot.Bookmarks static

method), 26
has_bytes_info() (shal-

lot.Operations.FilesystemOperationProgressMonitor
method), 46

has_inner_urls() (shallot.Eurl method), 30
has_item_info() (shal-

lot.Operations.FilesystemOperationProgressMonitor
method), 46

has_parent_segment() (shallot.Eurl method), 30
head() (shallot.Actions.ExecutionInfo method), 22
hostname() (shallot.Eurl method), 30

I
id() (shallot.Bookmarks.Bookmark method), 26
increment_transferred_bytes() (shal-

lot.Operations.HandlerTransfer method),
48

initialize() (shallot.Actions.AbstractAction
method), 21

initialize_sync() (shallot.Actions.ActionAction
method), 22

IntlStringMap (class in shallot), 41
IntlStringMap.IntlString (class in shallot), 41
is_cancelled() (shallot.Actions.ExecutionInfo

method), 22
is_detailscache_enabled() (shal-

lot.Operations.Operation method), 49
is_manual_intervention_needed() (shal-

lot.Actions.ExecutionInfo method), 22
is_prefix_of() (shallot.Eurl method), 30
is_started() (shallot.Environment.Timer method),

29
is_visible_for() (shal-

lot.FileSearch.SearchCriterionFactory
method), 34

is_visualprocessfeedback_active() (shal-
lot.Actions.ExecutionInfo method), 22

isExceptionClass() (shal-
lot.Exceptions.ScriptedException method),
32

ishidden() (shallot.Filesystem.Node method), 39
itemlist() (shallot.Filesystem.Handler method), 38
itemlist() (shallot.Operations.FilesystemOperation

method), 45
itemlist_by_type() (shal-

lot.Operations.FilesystemOperation method),
45

J
jump_to_eurl() (shallot.MainWindow method), 42

60 Index

shallot - Scripting Documentation, Release 1.2.4764

L
label() (shallot.Bookmarks.Bookmark method), 26
link_triggered() (shal-

lot.PanelDetails.MultiSelectionPanelDetail
method), 49

link_triggered() (shal-
lot.PanelDetails.SingleSelectionPanelDetail
method), 51

list_extendedattributes() (shal-
lot.Filesystem.Handler method), 38

list_extendedattributes() (shal-
lot.Operations.FilesystemOperation method),
45

log_debug() (shallot.Logging static method), 42
log_error() (shallot.Logging static method), 42
log_info() (shallot.Logging static method), 42
log_warning() (shallot.Logging static method), 42
Logging (class in shallot), 42

M
MainWindow (class in shallot), 42
map (shallot.IntlStringMap attribute), 42
match() (shallot.FileSearch.SearchCriterion method),

34
messagebox() (shal-

lot.Actions.ExecutionUserFeedback method),
24

module
shallot, 21

move_bookmark_down() (shallot.Bookmarks static
method), 26

move_bookmark_to_folder() (shal-
lot.Bookmarks static method), 26

move_bookmark_up() (shallot.Bookmarks static
method), 27

move_item() (shallot.Operations.FilesystemOperation
method), 45

move_items() (shal-
lot.Operations.FilesystemOperation method),
45

N
nodes() (shallot.FilePropertyDialog.Tab method), 33
nodetype() (shallot.Filesystem.Node method), 39

O
open_items() (shallot.MainWindow static method),

42
operation() (shallot.Actions.ExecutionInfo method),

22
Operations (class in shallot), 42
Operations.FilesystemOperation (class in

shallot), 43

Operations.FilesystemOperationProgressMonitor
(class in shallot), 46

Operations.FilesystemOperationStep (class
in shallot), 47

Operations.FilesystemOperationStep.ConflictResolution
(class in shallot), 47

Operations.HandlerTransfer (class in shallot),
47

Operations.Operation (class in shallot), 48
original_destination() (shal-

lot.Operations.FilesystemOperationStep
method), 47

outer_url() (shallot.Eurl method), 30
outer_url_is_root_directory() (shallot.Eurl

method), 30
outermost_inner_eurl() (shallot.Eurl method),

30

P
PanelDetails (class in shallot), 49
PanelDetails.AbstractPanelDetailValueElement

(class in shallot), 49
PanelDetails.MultiSelectionPanelDetail

(class in shallot), 49
PanelDetails.PanelDetail (class in shallot), 50
PanelDetails.PanelDetailInst (class in shal-

lot), 50
PanelDetails.PanelDetailValueElementButton

(class in shallot), 50
PanelDetails.PanelDetailValueElementIcon

(class in shallot), 50
PanelDetails.PanelDetailValueElementString

(class in shallot), 50
PanelDetails.PanelDetailValueElementWaiting

(class in shallot), 51
PanelDetails.SingleSelectionPanelDetail

(class in shallot), 51
parent_segment() (shallot.Eurl method), 30
path() (shallot.Eurl method), 31
progress_all() (shallot.Actions.ExecutionInfo

method), 23
progress_done() (shallot.Actions.ExecutionInfo

method), 23
progress_text() (shallot.Actions.ExecutionInfo

method), 23

R
read() (shallot.Streaming.ReadDataDevice method),

53
readall() (shallot.Streaming.ReadDataDevice

method), 53
refresh() (shallot.FilePropertyDialog.Tab method),

33
refresh() (shallot.Filesystem static method), 41

Index 61

shallot - Scripting Documentation, Release 1.2.4764

register() (shallot.Actions static method), 25
register() (shallot.FilePropertyDialog.Tab static

method), 33
register() (shallot.FileSearch.SearchCriterionFactory

static method), 35
register() (shallot.Filesystem.Handler static

method), 38
register() (shallot.PanelDetails.PanelDetail static

method), 50
register() (shallot.Setting static method), 52
register() (shallot.ThumbnailProvider static

method), 54
register_as_transferrable() (shal-

lot.DetailColumn static method), 28
remove_bookmark() (shallot.Bookmarks static

method), 27
remove_extendedattribute() (shal-

lot.Filesystem.Handler method), 38
remove_extendedattribute() (shal-

lot.Operations.FilesystemOperation method),
45

rename_item() (shallot.Filesystem.Handler method),
38

resolve_conflicts() (shal-
lot.Operations.FilesystemOperationProgressMonitor
method), 47

resolve_eurl_link() (shal-
lot.Operations.FilesystemOperation method),
45

resolve_eurl_link_nonrecursive() (shal-
lot.Operations.FilesystemOperation method),
45

resolve_node_link() (shal-
lot.Operations.FilesystemOperation method),
46

resolve_node_link_nonrecursive() (shal-
lot.Operations.FilesystemOperation method),
46

respect_cancel() (shallot.Actions.ExecutionInfo
method), 23

respect_cancel() (shal-
lot.Operations.HandlerTransfer method),
48

root() (shallot.Eurl method), 31
run() (shallot.Environment.Thread method), 29
run() (shallot.Environment.Timer method), 29
run() (shallot.Streaming.ThreadedReadDataDevice

method), 53

S
scheme() (shallot.Eurl method), 31
searchspec() (shallot.FileSearch.SearchCriterion

method), 34

selected_index_for_property() (shal-
lot.FilePropertyDialog.Tab method), 33

set_conflict_resolve_merge_directories()
(shallot.Operations.FilesystemOperationStep
method), 47

set_conflict_resolve_merge_directories_check_allowed()
(shallot.Operations.FilesystemOperationStep
method), 47

set_conflict_resolve_overwrite_destination()
(shallot.Operations.FilesystemOperationStep
method), 47

set_conflict_resolve_rename_destination_before()
(shallot.Operations.FilesystemOperationStep
method), 47

set_conflict_resolve_skip() (shal-
lot.Operations.FilesystemOperationStep
method), 47

set_conflict_resolve_use_different_destination_name()
(shallot.Operations.FilesystemOperationStep
method), 47

set_custom_data() (shallot.Operations.Operation
method), 49

set_customattribute() (shal-
lot.Filesystem.Handler method), 38

set_details() (shallot.Actions.ExecutionInfo
method), 23

set_displayname() (shallot.Filesystem.Node
method), 39

set_enabled() (shallot.Actions.AbstractAction
method), 21

set_extendedattribute() (shal-
lot.Filesystem.Handler method), 38

set_extendedattribute() (shal-
lot.Operations.FilesystemOperation method),
46

set_head() (shallot.Actions.ExecutionInfo method),
23

set_hidden() (shallot.Filesystem.Node method), 39
set_icon() (shallot.Filesystem.Node method), 39
set_items() (shallot.Filesystem.NodeList method),

40
set_manual_intervention_needed() (shal-

lot.Actions.ExecutionInfo method), 23
set_mtime() (shallot.Filesystem.Handler method), 39
set_progress() (shallot.Actions.ExecutionInfo

method), 23
set_progress_indeterminate() (shal-

lot.Actions.ExecutionInfo method), 23
set_row() (shallot.PanelDetails.PanelDetailInst

method), 50
set_subitems() (shallot.Actions.SubmenuAction

method), 25
set_value() (shallot.ConfigurationValue method), 27
set_value() (shallot.PanelDetails.MultiSelectionPanelDetail

62 Index

shallot - Scripting Documentation, Release 1.2.4764

method), 50
set_value() (shallot.PanelDetails.SingleSelectionPanelDetail

method), 51
set_value() (shallot.Setting method), 52
set_visible() (shallot.Actions.AbstractAction

method), 21
set_visualprocessfeedback_active() (shal-

lot.Actions.ExecutionInfo method), 23
Setting (class in shallot), 51
Setting.GroupInfo (class in shallot), 52
shallot

module, 21
simple_inputbox() (shal-

lot.Actions.ExecutionUserFeedback method),
24

simple_messagebox() (shal-
lot.Actions.ExecutionUserFeedback method),
24

source() (shallot.Operations.FilesystemOperationStep
method), 47

sourcetype() (shal-
lot.Operations.FilesystemOperationStep
method), 47

start() (shallot.Environment.Thread method), 29
start() (shallot.Environment.Timer method), 29
start_in_timer() (shallot.Environment.Timer

static method), 29
stop() (shallot.Environment.Timer method), 29
store_detail_in_cache() (shal-

lot.Operations.Operation method), 49
Streaming (class in shallot), 52
Streaming.BlobReadDataDevice (class in shal-

lot), 52
Streaming.ReadDataDevice (class in shallot), 52
Streaming.StreamReadDataDevice (class in

shallot), 53
Streaming.ThreadedReadDataDevice (class in

shallot), 53

T
tags() (shallot.Bookmarks.Bookmark method), 26
ThumbnailProvider (class in shallot), 53
to_objectname() (shallot.Actions.ExecutionInfo

method), 23
to_verb() (shallot.Actions.ExecutionInfo method), 23
try_get_nodes_for_eurl() (shallot.Filesystem

static method), 41

U
update_widget() (shallot.FilePropertyDialog.Tab

method), 33
userfeedback() (shallot.Actions.ExecutionInfo

method), 23

V
value() (shallot.ConfigurationValue method), 27
value_description() (shallot.Setting method), 52
visible() (shallot.Actions.AbstractAction method),

21

W
with_appended_segment() (shallot.Eurl method),

31
with_appended_segments() (shallot.Eurl

method), 31
write() (shallot.Streaming.ThreadedReadDataDevice

method), 53

Index 63

	General Notes
	Plugin Management Assistant
	General Plugin Design
	Implement & Register
	Position Indexes
	The ‘_ApiProxy’ Class
	Exceptions
	Localization
	Deployment

	Feature Overview
	Actions
	User Feedback
	Configuration Values
	Settings
	Main Window
	EURLs
	Filesystem
	Detail Columns
	Operations
	Panel Details
	File Property Dialog
	File Searches
	Thumbnails
	Bookmarks
	Logging
	Utilities

	API reference
	shallot module

	Python Module Index
	Index

